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a b s t r a c t

Most of the exogenous biomaterials for tendon repair have limitations including lower capacity for
inducing cell proliferation and differentiation, poorer biocompatibility and remodeling potentials. To
avoid these shortcomings, we intend to construct an engineered tendon by stem cells and growth factors
without exogenous scaffolds. In this study, we produced an engineered scaffold-free tendon tissue
(ESFTT) in vitro and investigated its potentials for neo-tendon formation and promoting tendon healing
in vivo. The ESFTT, produced via tendon-derived stem cells (TDSCs) by treatment of connective tissue
growth factor (CTGF) and ascorbic acid in vitro, was characterized by histology, qRT-PCR and immuno-
histochemistry methods. After ESFTT implanted into the nude mouse, the in vivo fluorescence imaging,
histology and immunohistochemistry examinations showed neo-tendon formation. In a rat patellar
tendon window injury model, the histology, immunohistochemistry and biomechanical testing data
indicated ESFTT could significantly promote tendon healing. In conclusion, this is a proof-of-concept
study demonstrating that ESFTT could be a potentially new approach for tendon repair and regeneration.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Tendon injuries are common in both the workplace and sport
activities with more than 30 million injuries occurred annually
worldwide [1]. There were about 200,000 tendon and ligament
repair surgeries performed annually in the USA [2]. The reported
incidence of acute Achilles tendon injury was 18 per 100,000
people [3]; and these injuries typically occurred between the ages
of 20 and 50 years [4]. Rotator cuff injuries are among the most
common traumatic tears, with over 50,000 rotator cuff repair

surgeries performed each year in the USA [5]. These injuries are
difficult to manage because tendons do not heal by a regenerative
process but via formation of a fibrotic scar, with poor tissue quality
and mechanical properties and frequently result in long-term pain,
discomfort and disability [6]. Tendon healing occurs in three
overlapping phases. In the initial inflammatory phase, inflamma-
tory cells enter the site of injury, chemotactic factors and
inflammatory cytokines are released with increased vascular
permeability, initiation of angiogenesis, stimulation of tenocyte
proliferation. In the repair phase, tenocytes graduallymigrate to the
wound, and type III collagen synthesis is initiated and peaks during
this phase, which lasts for a few weeks. After approximately 4e6
weeks, the modeling phase commences, the healing tissue is
reshaped with decrease in cellularity and the type III collagens are
being replaced by type I collagen and other tendon related ECM
proteins during the remodeling phase. The inability of tendons to
self-repair and the general inefficiencies of current treatments have
spurred a demand for the development of tissue-engineering
strategies for tendon repair and regeneration [7].

Most of the exogenous biomaterials for tendon repair have
limitations including lower capacity for inducing cell proliferation
and differentiation, poorer biocompatibility and remodeling
potentials. Many challenges exist in tendon tissue engineering,
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such as low cell proliferation and differentiation efficiency within
exogenous biomaterials, unmatched rates between exogenous
scaffold degradation and cell proliferation as well as extracellular
matrix production, and different biomechanical properties
compared with intact tendon. With the development of cell sheet-
based bioengineering concepts, cell sheet engineering can provide
natural cellular junctions, extracellular matrix and microenviron-
ments [8e12]. The current investigation intends to construct an
engineered tendon by stem cells and growth factors without
exogenous scaffolds.

Tendon stem/progenitor cells, as a new cell type, was firstly
identified in both human and mouse tendon tissues in 2007 [13],
and we also isolated and characterized this unique stem cell pop-
ulation from rat tendon tissues [14,15]. We have found that tendon-
derived stem cells (TDSCs) have higher mRNA expression of teno-
modulin (Tnmd), scleraxis (Scx), type I collagen (Col1A1), decorin
(Dcn) and biglycan (Bgn) than that of bone marrow derived
mesenchymal stem cells (BMSCs) [16]. Our recent study further
demonstrated TDSCs could promote earlier and better recovery
after tendon injury as a new cell source for tendon repair [17].
However, higher mRNA expression of osteogenic markers such as
alkaline phosphatase (ALP) and osteocalcin and chondrogenic
markers aggrecan (Acan) and type II collagen (Col2A1) was also
detected in the TDSCs comparing with that of BMSCs in vitro [16],
indicating that TDSCs may also have higher osteo-chondrogenic
potentials. The ectopic bone formation in tendon after trans-
plantation of MSCs is an unwanted side effect that had been re-
ported [18,19]. To avoid this potential risk, we propose that
tenogenic differentiation of TDSCs in vitro may promote tendon
healing and alleviate the risk of complication such as ectopic bone
formation after transplantation of tenogenic TDSCs in vivo.

Connective tissue growth factor (CTGF) is a cystein rich protein
(Cyr61), and nephroblastoma overexpressed gene family growth
factor that can promote fibroblast proliferation and matrix forma-
tion in vitro [20]. The CTGF knockoutmice lead to abnormal skeletal
growth with impaired chondrocyte proliferation, angiogenesis,
extracellular matrix production and turnover [21]. CTGF mRNAwas

highly expressed during early tendon healing in a chicken flexor
digitiorum profundus tendon injurymodel [22], which implied that
CTGF might be involved in tendon repair. Treatment of human
BMSCs with CTGF and ascorbic acid was reported to induce fibro-
blastic differentiation with increased production and mRNA
expression of collagen type I and tenascin C but not osteogenic,
chondrogenic and adipogenic differentiation [23,24].

Ascorbic acid, as one form of vitamin C, plays an important role in
the collagen andother extracellularmatrixes (ECM)production [25e
27], as well as to mimic the in vivo biological microenvironment of
MSCs and regulate their proliferation anddifferentiation [28,29]. The
intraperitoneal injection of vitamin C once for every 2 days acceler-
ated the Achilles tendon healing with early angiogenesis and
increased collagen synthesis in rat model [30]. Recently, Wei et al.
reported that Vitamin C alone could promote MSCs sheet formation
and tissue regeneration by elevating telomerase activity [12].

In this study, wewould like to test the production of engineered
scaffold-free tendon tissue (ESFTT) in vitro via tenogenic differen-
tiation of TDSCs through treatment of CTGF and ascorbic acid; and
further test the hypothesis of using the ESFTT to promote tendon
repair in a rat patellar tendon window injury model.

2. Materials and methods

2.1. Isolation and culture of rat GFP-TDSCs

All experiments were approved by the Animal Research Ethics Committee, the
Chinese University of Hong Kong. 4-6-week-old male GFP (Green Fluorescent
Protein) SpragueeDawley rats, weighting 250e300 g were used in this study. The
procedure of isolation and culture rat GFP-TDSCs was established in our previous
work as illustrated in Fig. 1A [14,15]. In brief, the patellar tendons were excised from
healthy rats overdosed with 2.5% sodium phenobarbital. The tissues were minced,
digested with type I collagenase (3 mg/ml; SigmaeAldrich, St Louis, MO, USA) and
passed through a 70 mm cell strainer (Becton Dickinson, Franklin Lakes, USA) to yield
single-cell suspension. The released cells were washed in PBS and resuspended in
low glucose Dulbecco’s Modified Eagle Medium (LG-DMEM) (Invitrogen Corpora-
tion, Carlsbad, USA), 10% fetal bovine serum (FBS), 100 U/ml penicillin, 100 mg/ml
streptomycin and 2 mM L-glutamine (complete culture medium) (all from Invi-
trogen Corporation, Carlsbad, USA). The isolated cells were plated at low density
（500 cells/cm2）and cultured at 37 �C, 5% CO2 to form colonies. At day 2 after initial

Fig. 1. The GFP-TDSCs (A) formed a cellular sheet (B) after treated by CTGF and ascorbic acid. The TDSCs cell sheet (B) was then rolled up and loaded on a 1 cmwide U-shaped spring
to form engineered scaffold-free tendon tissue (C), which was sutured on the back of nude mice (D) to form neo-tendon in vivo. The engineered scaffold-free tendon tissue was
sutured to the patellar bone and tibia tuberosity to promote tendon healing in a SD rat patellar tendon window injury model (E).
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plating, the cells were washed twice with PBS to remove non-adherent cells. At day
7e10, they were trypsinized and mixed together as passage 0 (P0). GFP-TDSCs were
sub-cultured when they reached 80e90% confluence. Medium was changed every
three days. Cells at passage 4 were used for all experiments. The colongenicity and
multi-differentiation potentials of the isolated cells were confirmed by colony
forming assay, osteogenic, adipogenic and chondrogenic differentiation assays
in vitro before being used for the experiments in this study.

2.2. In vitro engineered scaffold-free tendon tissue by using TDSCs cell sheet

GFP-TDSCs were plated at 5000 cells/cm2 in a T75 flask and cultured in complete
culture medium until the cells reached confluence. The cells were then incubated in
alpha-MEM at low serum concentration (5%) with (induction group) or without
(control group) the supplementation with ascorbic acid (25uM) (Catalog#A-0278,
Sigma, USA) and CTGF (25 ng/ml) (Human CTGF, Catalog#120-19, PeproTech, USA) at
37 �C, 5% CO2. Mediumwith or without CTGF and ascorbic acid was changed every 3
days. After treated by CTGF and ascorbic acid for 2 weeks, abundant ECM was
produced by TDSCs and a cellular sheet was formed as shown in Fig. 1B. For
collection of cell sheet, 1 ml 0.25% trypsin (Invitrogen Corporation, Carlsbad, USA)
was added into the T75 flask and clap the flask lightly for about 20 s to detach the
cell sheet, and 10 ml culture medium was added into the flask to neutralize the
trypsin. The TDSCs cell sheets were collected in 10 cm cell culture dishes, then rolled
up and loaded on a 1 cm wide U-shaped spring to form tendon-like structure as
shown in Fig. 1C, which were used in the following studies.

2.3. Quantitative real time RT-PCR (qRT-PCR)

qRT-PCR was performed as previously described [15]. GFP-TDSCs were plated at
5000 cells/cm2 in a 24-well plate and cultured in complete culturemedium until the
cells reached confluence. The cells were then incubated with ascorbic acid (25uM)
and CTGF (25 ng/ml) or medium only in alpha-MEM at low serum concentration
(5%) at 37 �C, 5% CO2. Mediumwith or without CTGF and ascorbic acid was changed
every 3 days. At week 2 after treatment, the cells were harvested for qPCR analysis of
expression of Tnmd, Scleraxis (Scx), Thrombospondin-4 (Thbs4), Osteocalcin (Bglap)
and Type II collagen (COL2A1), Aggrecan (Acan). The mRNA expression of major
tendon extracellular matrix genes Tenascin C (TnC), Type I Collagen (COL1A1),
Decorin (Dcn), Biglycan (Bgn), Fibromodulin (Fmod), and Elastin (Eln)) was also
examined. The cells were harvested and homogenized for RNA extraction with
RNeasymini kit (Qiagen, Germany). ThemRNAwas reversely transcribed to cDNA by
the First Strand cDNA kit (Promega, Madison, WI, USA). 5 ml of total cDNA of each
sample were amplified in a 25 ml reaction mix using the Platinum SYBR Green qPCR
SuperMix-UDG with specific primers using the ABI StepOne Plus system (all from
Applied Biosystems, CA, USA) (Table 1). Cycling conditions were: denaturation at
95 �C for 10 min, 45 cycles at 95 �C for 20 s, optimal annealing temperature for 25 s,
72 �C for 30 s and finally at 60e95 �Cwith a heating rate of 0.1 �C/s. The expression of

target gene was normalized to that of b-actin gene. Relative gene expression was
calculated with the 2�

OCT formula.

2.4. In vivo neo-tendon formation by engineered scaffold-free tendon tissue in nude
mice

In order to demonstrate the engineered scaffold-free tendon tissue can form
neo-tendon in vivo, a nudemousemodel was applied as illustrated in Fig. 1D. Briefly,
total 8 mice were used; after anesthesia, an incision was made on the dorsum and
a subcutaneous pocket was created to expose posterior midline. The scaffold-free
tendon tissue was sutured to posterior midline at both ends using Ethicon 6-
0 suture, there was tensile strength on the tendon graft with the mice movement. At
the end of 8 (n ¼ 4) and 12 weeks (n ¼ 4), the implanted tissues were harvested,
subject to ex vivo fluorescence imaging examination, and histology for examination
of vascularity and collagen fiber alignment.

2.5. In vivo fluorescence imaging

Invivofluorescence imagingof neo-tendonat the time of sampleharvestwasdone
by IVIS 200 imaging system (Xenogen, Alameda, CA, USA) according to our previous
study protocol [17]. The nude mice were terminated with overdosing 2.5% sodium
phenobarbital, the tendon tissueswere harvested and immediately placed in the light-
tight specimen chamber of the IVIS 200 imager. Grayscale reference images were
obtained with low-light illumination. Fluorescence images were then acquired in
complete darkness with Fluorescent imaging model, a GFP excitation/emission filter
set,10 s exposure time, medium binning, F/Stop 8, lamp level high, field of view C; for
the cooled charge-coupled device (CCD) camera, color bar:Min¼ 7000,Max¼ 30000.
The pseudo-colour image (indicating light intensity, blue least and red most intense)
was superimposed over the grayscale reference image to form a composite image
using Living Image analysis software (v2.50, Xenogen Corporation, Alameda, CA, USA).

2.6. Patellar tendon injury and repair animal model

Ninety six Sprague Dawley male adult rats (6e8 weeks, body weight of 250e
300 g) were used in this study. To create the tendon defect, the central one-third
of the patellar tendon (w1 mm in width) was removed from the distal apex of the
patella to the insertion of the tibia tuberosity with two stacked sharp blades
according to our well-established protocol as illustrated in Fig. 1E. The operated rats
were divided into 2 groups: (a) injury-only group and (b) TDSCs cell sheet group. The
engineered scaffold-free tendon tissue was placed in the tendon defect and sutured
to the patellar bone and tibia tuberosity using Ethicon 6-0 suture. Window injury
sutured without TDSCs cell sheet was served as control. The animals were allowed to
have free-cage activity until euthanasia. At week 2, 4 and 8 after surgery, six animals
in each group were killed and the patellar tendons were harvested for ex vivo
examination of the presence of transplanted cells by fluorescence imaging, followed

Table 1
Table showing the primer sequence, product size and annealing temperature of target genes for real time RT-PCR.

Gene Primer nucleotide sequence Product
size (bp)

Annealing
temperature

Accession no.

b-actin 50-ATC GTG GGC CGC CCT AGG CA-30 (forward) 243 52 NM_031144
50-TGG CCT TAG GGT TCA GAG GGG-30 (reverse)

Collagen type I (Col2a1) 50-CCGGACTGTGAGGTTAGGAT-30(forward) 364 55 BT007205
50-AACCCAAAGGACCCAAATAC-30(reverse)

Collagen type II (Col2a1) 50- CATCGGTGGTACTAAC-30(forward) 238 55 NM_053356.1
50- CTGGATCATATTGCACA-30(reverse)

Aggrecan (Acan) 50-CTTGGGCAGAAGAAAGATCG-30 (forward) 158 58 J03485
50-GTGCTTGTAGGTGTTGGGGT-30 (reverse)

Biglycan (Bgn) 50- TCTACATCTCCAAGAACCACCTGG-30 (forward) 513 55 NM_017087.1
50- TTGGTGATGTTGTTGGAGTGCAGA-30 (reverse)

Decorin (Dcn) 50-ATGATTGTCATAGAACTGGGC-30 (forward) 382 55 NM_022190.1
50-TTGTTGTTATGAAGGTAGAC-30 (reverse)

Fibromodulin (Fmod) 50-GCTCTGGGCTCCTACTCCTT-30 (forward) 450 58 NM_080698.1
50-GTCCTGCCATTCTGAGGTGT-30 (reverse)

Scleraxis (Scx) 50- AACACGGCCTTCACTGCGCTG-30(forward) 123 58 NM_001130508.1
50- CAGTAGCACGTTGCCCAGGTG-30(reverse)

Tenomodulin (Tnmd) 50-CCATGCTGGATGAGAGAGGTTAC-30(forward) 72 58 NM_022290.1
50-CACAGACCCTGCGGCAGTA-30(reverse)

Osteocalcin (Bglap) 50-GGTGCAAAGCCCAGCGACTCT-30(forward) 199 60 M23637
50-GGAAGCCAATGTGGTCCGCTA-30(reverse)

Tenascin C (TnC) 50-CAGAAGCTGAACCGGAAGTTG-30 (forward) 278 55 NM_053861.1
50-GGCTGTTGTTGCTATGGCQCT-30(reverse)

Elastin (Eln) 50-AAAGTTCCTGGTGTCGGTCTTCCA-30(forward) 528 62 NM_012722.1
50- AGCAGCTCCATACTTAGCAGCCTT -30(reverse)

Thrombospondin-4 (Thbs4) 50-TCCACGTAAACACCCAGACA-30(forward) 140 60 XM_342172.4
50- TTCTGCTACTGCACGGAATG -30(reverse)
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by histology for the examination of cellularity and vascularity of the regenerated
tissue and polarization microscopy for the assessment of collagen fiber alignment.
The fate of TDSCs cell sheet in the tendon defect was followed by immunohisto-
chemical staining of tenogenic-specific (Tenomodulin) and tendon ECM (type I and
III collagen) markers. At week 2, 4 and 8, another 10 animals from each group were
euthanatized and both the contralateral intact and the injured patellar tendons were
harvested for biomechanical test.

2.7. Ultrasound imaging

The patellar tendon samples were scanned before the biomechanical testing by
the animal ultrasound system (Vevo-770 High Resolution In-Vivo Micro-Imaging
System, VisualSonics, Toronto, Ontario, Canada) according to our previous study
protocol [17]. The ultrasound system is equipped with a rat handling platform, a 3-D
motor, a 3-D mode imager and a RMVTM (real-time micro visualization) 711 scan
head at 55 MHz. The resolution of the ultrasound system is 3.0 mm. Briefly, the
harvested kneewas shaved and placed on the handling platform in a supine position
with knee flexion of approximately 100� . The limbwas fixed with modeling clay and
coupling gel was added to cover the whole knee. After determining the best position
for imaging, the 3D image of the patellar tendon was scanned for 12 mm with step
size of 0.032 mm. The tendon contour corresponding to the rupture site in the
biomechanical test was drawn and the cross-sectional area was measured using the
system software. The same operator, whom was blinded to the study groups, per-
formed the ultrasound imaging examination in this study.

2.8. Biomechanical testing

We followed the procedures as described in previous study [17]. The patellare
patellar tendon-tibia composite was first isolated. The regenerated tissue in the
windowwound connected to the bony ends was then isolated by excising themedial
and lateral healthy tendon using two stacked blades similar to the creation of tendon
defect. The composite was fixed on a custom-made testing jig with two clamps. The
lower onewas used to fix the tibia shaft and plateauwhile the upper onewas used to
fix the proximal patella, the quadriceps muscles and its tendons without creating
mechanical stress to the junction and the mid-substance. The whole construct was
thenmounted onto the Hounsfield H25KS mechanical testingmachine (Tinius Olsen
Ltd, Salfords, UK). The test to failure was performed at a testing speed of 40 mm/min
and preload of 0.1N using a 50-N load cell. The loadedisplacement curve of the
healing tendon tissue was recorded. The ultimate stress (N/mm2) was calculated
based on the ultimate load divided by the cross-sectional area at the break point
measured by high-resolution Vevo 770 animal ultrasound system (Visualsonics,
Toronto, Canada) with images taken immediately prior to the biomechanical test.
The Young’s modulus (N/mm2) was calculated from the linear slope of a stresse
strain curve. The percentage of testing values in the regenerated tissue to the
central portion of the contralateral healthy patellar tendon created similarly with
two stacked blades was also reported.

2.9. Histology and immunohistochemistry

The formed engineered scaffold-free tendon tissue, neo-tendon tissue and
regenerated patellar tendon tissue were washed in PBS, fixed in buffered formalin
and 100% ethanol, embedded in paraffin, cut longitudinally to 5-mm thick sections
and mounted on 3-aminopropyl-triethoxy-silane (SigmaeAldrich, St Louis, MO,
USA) coated slides. After deparaffination, the sections were stained with hematox-
ylin and eosin. Immunohistochemistry was done as described previously [17,31,32].
Briefly, after deparaffination, the sections were rehydrated, quenched of endogenous
peroxidase activity and subject to antigen retrieval. After blocking with 5% normal
donkey and goat serum, the sections were incubatedwith specific antibodies against
Tenomodulin, Collagen Type I & III, GFP, Osteocalcin, Collagen Type II (sc-49325, sc-
8784, sc-8780, sc-8334, sc-365797, Santa Cruz Biotechnology, CA, USA; MS-235-P,
Thermo Scientific, USA) at dilution of 1:100 at 4 �C overnight. Donkey anti-goat
horseradish peroxidase (HRP)-conjugated secondary antibody, goat anti-rabbit
horseradish peroxidase (HRP)-conjugated secondary antibody and goat anti-
mouse horseradish peroxidase (HRP)-conjugated secondary antibody (sc-2020, sc-
2030, sc-2302, Santa Cruz Biotechnology, CA, USA; all at a dilution sof 1:100) were
then added for an hour respectively, followed by 3, 30 diaminobenzidine tetrahy-
drochloride (K3468, DAKO, Glostrup, Denmark) in the presence of H2O2. Afterward,
the sections were rinsed, counterstained in hematoxylin, dehydrated with graded
ethanol and xylene, and mounted with p-xylene-bis-pyridinium bromide (DPX)
permount (Sigma Aldrich, St Louis, MO, USA). Primary antibody was replaced with
blocking solution in the negative controls. All incubation times and conditions were
strictly controlled. Samples from nudemouse or tendonwindow injury studies were
stained in the same batch. The sections were examined under light microscopy
(DMRXA2, Leica Microsystems Wetzlar GmbH, Germany).

2.10. Data analysis

Data was presented as mean � SD and shown in boxplots. Comparison of 2
groups at different time points was done using ManneWhitney U test. All the data

analysis was done using SPSS (SPSS Inc, Chicago, IL, USA; version 16.0), p < 0.05 was
regarded as statistically significant.

3. Results

3.1. Gross observation of TDSCs cell sheet and engineered scaffold-
free tendon tissue

After treated by CTGF and ascorbic acid for 2 weeks, a cellular
sheet was formed by TDSCs (Fig. 1B). This TDSCs cell sheet was
detached by trypsin from cell culture flask and transferred in
60 mm dish. After washed by PBS, the TDSCs cell sheet was rolled
up and loaded on a 1 cmwide U-shaped spring to form engineered
scaffold-free tendon tissue (Fig. 1C), which was used in following
study.

3.2. Components analysis of TDSCs cell sheet and engineered
scaffold-free tendon tissue

3.2.1. Tenogenic, osteogenic and chondrogenic specific markers
mRNA expression in TDSCs cell sheet

The TDSCs treated by CTGF and ascorbic acid significantly
increased mRNA expression of tendon-specific markers Tnmd
(p¼ 0.006) (Fig. 2A), Scx (p¼ 0.006) (Fig. 2B) and Thbs4 (p¼ 0.006)
(Fig. 2C); meanwhile, the mRNA expression of chondrogenic
markers Col2A1 (p¼ 0.004) (Fig. 2D), Acan (p¼ 0.004) (Fig. 2E) and
osteogenic marker Bglap (p ¼ 0.018) (Fig. 2F) were all significantly
decreased.

3.2.2. Tendon ECM related markers mRNA expression in TDSCs cell
sheet

The tendon extracellular matrix related markers Col1A1
(p ¼ 0.004) (Fig. 2G), Eln (p ¼ 0.004) (Fig. 2I), Dcn (p ¼ 0.004)
(Fig. 2J), Bgn (p ¼ 0.004) (Fig. 2K) were also significantly increased
in TDSCs after treatment of CTGF and ascorbic acid. The induction
group had higher mRNA expression of TnC (Fig. 2H) than the
control group without significant difference (p ¼ 0.078). There was
no significant difference for the Fmod (Fig. 2L) mRNA expression in
TDSCs after treated by CTGF and ascorbic acid.

3.3. Histological characteristics and tendon specific markers
expression in engineered scaffold-free tendon tissue

H&E staining of this engineered scaffold-free tendon tissue
showed an immature tissue structure with relatively loose extra-
cellular matrix (Fig. 3A). Polarization microscopy also confirmed
that the collagen fibrils were thin and randomly oriented (Fig. 3B),
with relatively higher cellularity (Fig. 3C). The GFP-TDSCs were in
round, ellipse or spindle shape and randomly oriented along within
the extracellular matrix (Fig. 3D). Immunohistochemistry staining
for tenomodulin (Fig. 3F), collagen type I (Fig. 3G), collagen type III
(Fig. 3H), GFP (Fig. 3N), collagen type II (Fig. 3O) and osteocalcin
(Fig. 3P) were performed, and the intact patellar tendon was used
as a control (Fig. 3JeL,ReT). The engineered scaffold-free tendon
tissue group had stronger expression of tenomodulin (Fig. 3F);
stronger expression of collagen type I (Fig. 3G) comparing to that in
intact patellar tendon (Fig. 3J and K); the collagen type III expres-
sion was similar in the two groups (Fig. 3H,L). The TDSCs was still
present in the wound areas as shown by positive staining of GFP
(Fig. 3N), whereas no GFP expression in the intact patellar tendon
(Fig. 3R). The engineered scaffold-free tendon tissue group had
weak expression of collagen type II (Fig. 3O) and osteocalcin
(Fig. 3P), with similar staining to those of the intact healthy patellar
tendon (Fig. 3S,T).
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3.4. Neo-tendon formation after engineered scaffold-free tendon
tissue implantation in nude mice

3.4.1. Gross observation and in vivo fluorescence imaging of neo-
tendon tissues

To determine the effect of engineered scaffold-free tendon
tissue on neo-tendon formation in vivo, the engineered scaffold-
free tendon tissue was implanted into the nude mice. The
implanted tendon tissue became slightly smaller, shorter and
thinner at the end of week 8 and 12 following implantation, the
gross samples were surrounded by blood vessels (Fig. 4A,B). As
shown in (Fig. 4C,D), the GFP signals could be detected in all time
points. The in vivo fluorescent imaging showed that the GFP-TDSCs

in implanted scaffold-free tendon tissue were in situ without going
to other place (Fig. 4C,D) at 8 and 12 weeks in nude mice.

3.4.2. Histology of neo-tendon tissue
After 8 weeks transplantation, there were loosely deposited

collagens in the tendon-like structure (Fig. 4E,F), the collagen
fibrils became mature at 12 weeks (Fig. 4G,H). Elongated or
spindle-shaped TDSCs were longitudinally aligned along with
collagen fibers with time development (Fig. 4E,G). More extra-
cellular matrices and collagen were produced at 12 weeks
(Fig. 4G,H) than that of 8 weeks (Fig. 4E,F). At week 8, the collagen
birefringence was weak (Fig. 4F); it increased at 12 week (Fig. 4H).
At week 12, D-band periodicity representing tendon structure was

Fig. 2. Boxplots showing the mRNA expression of (A) Tenomodulin; (B) Scleraxis; (C) Thbs4; (D) Type II Collagen; (E) Aggrecan; (F) Osteocalcin; (G) Type I Collagen; (H) Tenascin C;
(I) Elastin; (J) Decorin; (K) Biglycan; (L) Fibromodulin after treatment of GFP-TDSCs with and without ascorbic acid (25uM) and CTGF (25 ng/ml) for 2 weeks. *p < 0.05, N ¼ 6, NPar
Tests, ManneWhitney Test.
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observed in the wounded area under polarization microscopy
(Fig. 4H’, arrows).

3.5. Immunohistochemistry staining results of the neo-tendon
tissues

Immunohistochemistry staining for tenomodulin, collagen type
I, collagen type III, GFP, collagen type II and osteocalcin was per-
formed in the neo-tendon tissues at 8 and 12 weeks following
implantation, and in the normal patellar tendon (as control). At
week 8, the tenomodulin expression in the neo-tendonwas weaker
than that of week 12 (Fig. 5A2,B2); the collagen type I immuno-
staining showed no difference between week 8 and 12 (Fig. 5A3,
B3); the collagen type III expression was stronger at week 8 than
that of week 12 (Fig. 5A4, B4). At week 12, the staining patterns of
tenomodulin, collagen type I and collagen type III were similar to

that of intact patellar tendon (Fig. 5B2e4, C2e4). The GFP immu-
nostaining was positive at week 8 and 12, but the GFP expression
was stronger at week 8 than that of week 12 (Fig. 5D2,E2). The
intact patellar tendon had no expression of GFP (Fig. 5F2). At week
12, the neo-tendon did not express collagen type II and osteocalcin,
similar was true in the intact patellar tendon (Fig. 5G2,3, H2,3). No
positive signal was found in any of the negative control groups
(Fig. 5A1,B1,C1,D1,E1,F1,G1, and H1).

3.6. Promote tendon healing by scaffold-free tendon tissue in rat
patellar tendon injury model

3.6.1. Gross observation
At the first 2 weeks post-operation, all the skin incision wounds

healed with no sign of infection, swelling and suppuration. During
the last 6 weeks post-operation, no apparent difference was
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noticed in animals in all groups. The vascularity in the ESFTT
group was lower than that of control group at week 2. The vascu-
larity decreased at week 4 and week 8 in both groups. The injury
gap was observed in both groups at 2 weeks but became less clear
at 4 and 8 weeks. After resecting the intact patellar tendon tissue
around the injury gap, the regenerated patellar tendon tissue
looked tough and thick in the ESFTT group, having similar
appearance as the intact patellar tendon (Fig. 6B1e3), whereas the
regenerate tissues still looked transparent and thin in the control
group at 4 and 8 weeks (Fig. 6A1e3).

3.6.2. Histology and polarization microscopy
Both the ESFTT group and control group have higher cellularity

at week 2 (Fig. 6C1,D1) in thewounded area compared to the region
outside the window injury, but the ESFTT group appeared to have
higher cellularity in the injury window region than that of the
control group (Fig. 6D1). The cellularity in both groups reduced,
with some extracellular matrix deposition at week 4 (Fig. 6C2,D2,
arrow) and week 8 (Fig. 6C3,D3, arrow), and the extracellular
matrix production in ESFTT group (Fig. 6D1e3, arrow) was obvi-
ouslymore than that of control group (Fig. 6C1e3, arrow) at all time
points, as shown by the Eosin staining intensity of the extracellular
matrix. The healing tendon cells in the control group were round
and randomly oriented at week 2 and 4 (Fig. 6C1,2, *), but some
cells became more elongated at week 8 (Fig. 6C3, *). Most of the
healing tendon cells were round and randomly oriented at week 2
in the ESFTT group, similar to that in the control group, but some
cells were already elongated even at week 2 (Fig. 6D1, *). At week 4
and 8, more and more healing tendon cells became longitudinally-
arranged spindle-shaped and were embedded between parallel
collagen fibers (Fig. 6D2,3, *).

The collagen birefringence was low at week 2 and increased
with time in both groups (Fig. 6E1-3, E1-3’, F1-3, F1’-3’). Higher
collagen birefringence was observed at week 2 and week 4 in the
ESFTT group compared to that in the control group, indicating
better collagen fiber alignment (Fig. 6E1’ vs. F1’ and Fig. 6E2’ vs. F2’).
At week 8, collagen fibers with D-band periodicity, typical of
tendon structure, was observed in the ESFTT group, but not in the
control group (Fig. 6E3’ vs. F3’). No fibrocartilage or ectopic bone
was observed in both groups up to week 8.

3.6.3. Tendon specific ECM markers expression in the regenerated
tendon tissue

Immunohistochemistry staining for tenomodulin, collagen type
I and collagen type III was performed in the regenerated tendon
tissue at 2, 4 and 8 weeks. The expression of tenomodulin in the
control group was the strongest at week 4 (Fig. 7A3) than that of
week 2 and 8 (Fig. 7A2,A4); however, the tenomodulin expression
in the ESFTT group was the strongest at week 2, and decreased at
week 4 and 8 gradually (Fig. 7B2e4). In both groups, the expression
of collagen type I was positive at week 2 (Fig. 7C2,D2), reduced at
week 4 (Fig. 7C3,D3), and became weaker in both groups at week 8
(Fig. 7C4,D4). The expression of collagen type III was weak in the
ESFTTgroup at all time points (Fig. 7F2e4), but in the control group,
the expression of collagen type III increased with time (Fig. 7E2e4).
No positive signal was detected in all the negative controls for
immunostaining (Fig. 7A1,B1,C1,D1,E1,F1).

3.6.4. Osteogenic and chondrogenic markers expression in the neo-
tendon tissues

At week 8, the osteocalcin expressionwas positive in the control
group (Fig. 8A2) whereas negative in the ESFTTgroup (Fig. 8B2); the
collagen type II was negatively expressed with no difference
between the control group (Fig. 8A3) and the ESFTT group
(Fig. 8B3). There was no positive signal in all the negative controls
(Fig. 8A1,B1).

3.6.5. The fate of the transplanted engineered scaffold-free tendon
tissues

The fate of the transplanted GFP-TDSCs was traced with ex vivo
fluorescent imaging of the GFP signals, and was double checked by
immunohistochemistry staining of GFP. The immunostaining of
GFP results showed that the GFP expressionwas positive at week 2,
4 and 8, but it was reduced at week 4 and 8 with time (Fig. 8D2e4).
The expression of GFP was negative in the control group at all time
points. No positive signal was detected in all the negative controls
(Fig. 8A1,B1,C1,D1). The ex vivo fluorescent imaging results showed
that the transplanted GFP positive cells were present in thewindow
wound in the ESFTT group at week 2 (Fig. 8F1). However, the GFP
signal decreased and became almost undetectable at week 4 and 8
(Fig. 8F2,3), and only one sample in the ESFTT group showed some
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weak signal at week 4. No fluorescent signal was detected in the
control group at all time points (Fig. 8E1e3).

3.6.6. Biomechanical testing
The ultimate stress was significantly higher in the TDSCs cell

sheet group compared to that in the control group at all time point
(2wk: p ¼ 0.012, 5.38 � 2.31 N/mm2 versus 12.35 � 3.62 N/mm2;
4wk: p ¼ 0.01, 10.73 � 2.61 N/mm2 versus 23.18 � 7.96 N/mm2;
8wk: p ¼ 0.001, 18.42 � 4.01 N/mm2 versus 29.21 � 4.40 N/mm2)
(Fig. 9A). The Young’s modulus was significantly higher in the

TDSCs cell sheet group compared to that in the control group at all
time point (2wk: p ¼ 0.004, 36.90 � 14.85 N/mm2 versus
99.72� 12.10 N/mm2; 4wk: p¼ 0.004, 76.83� 16.93 N/mm2 versus
132.84 � 35.59 N/mm2; 8wk: p ¼ 0.001, 128.28 � 11.25 N/mm2

versus 183.45 � 14.66 N/mm2) (Fig. 9B).
At week 2, TDSCs cell sheet implantation restored the ultimate

stress to 35.92% � 10.29% of the contralateral control compared to
only 17.23% � 7.62% in the control group (p ¼ 0.004), and restored
the Young’s modulus to 46.92% � 9.60% of the contralateral control
compared to only 18.04% � 7.40% in the control group (p ¼ 0.004).
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Fig. 9. Boxplots show (A) the ultimate stress and (B) the Young’s modulus in the control group and the ESFTT group at week 2, 4 and 8 after repair. *p � 0.05, ManneWhitney U-test.
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At week 4, TDSCs cell sheet implantation restored the ultimate
stress to 62.37% � 15.54% of the contralateral control compared to
only 36.60% � 7.90% in the control group (p ¼ 0.01), and restored
the Young’s modulus to 72.59%� 11.90% of the contralateral control
compared to only 32.09% � 8.28% in the control group (p ¼ 0.003).
At week 8, TDSCs cell sheet implantation restored the ultimate
stress to 81.12% � 9.94% of the contralateral control compared to
only 55.46% � 10.91% in the control group (p ¼ 0.003), and
restored the Young’s modulus to 91.11% � 3.74% of the contralateral
control compared to only 62.00% � 8.80% in the control group
(p ¼ 0.001).

4. Discussion

In this study, we successfully constructed engineering scaffold-
free tendon tissue using TDSCs cell sheet in vitro, which was
formed by TDSCs with the tenogenic induction of ascorbic acid and
CTCF, and the neo-tendon was formed in vivo after transplantation
in a nude mouse model. Furthermore, the engineered scaffold-free
tendon tissue promoted tendon healing in a rat patellar tendon
window injury model. The TDSCs cell sheet had increased tendon
specific markers mRNA expression, decreased osteogenic and
chondrogenic markers mRNA expression, as well as increased
tendon ECM related markers mRNA expression. The in vitro engi-
neered scaffold-free tendon tissue had positive protein expression
of tenomodulin, collagen type I and collagen type III. The GFP-
TDSCs can survive in the formed neo-tendon tissue at least for 12
weeks. This neo-tendon tissue had tendon tissue characteristics
including collagen fibril polarization and tendon specific proteins
(tenomodulin, collagen type I and collagen type III) expression,
which were similar with that of intact healthy patellar tendon. In
rat patellar tendon injury model, our ESFTT recovered histological
structure and biomechanical properties of injured patellar tendon,
which indicated that ESFTT had the potential to promote tendon
repair.

It has been almost two decades since Langer and Vacanti re-
ported tissue engineering to the development of functional
substitutes for damaged tissue [33]. However, traditional scaffold-
based tissue engineering techniques have limitations including
low cell proliferation and differentiation efficiency, poor biocom-
patibility, biodegradable abilities, and biomechanical properties. In
contrast, the cell sheet preserved cellular connections, ECM, and
microenvironments, which may be a suitable biomaterial for tissue
regeneration [12]. Cell sheet engineering had been applied for
tissue regeneration as an alternative biomaterial in corneal,
myocardial, hepatic, and periodontal tissues repair with good
outcomes [34e37]. In tendon tissue regeneration, application of
cell sheet engineering has not been reported yet.

Our results showed that the TDSCs cell sheet was formed in vitro
by the tenogenic differentiation through ascorbic acid and CTGF
treatments, resulting in increase inmRNA and protein expression of
tenogenic markers and major tendon-related extracellular matrix
proteins. Ascorbic acid and CTGF treatment had significantly
increased the expression of tenogenic markers (Scleraxis, Tenomo-
dulin, Thbs4) and tendon extracellular matrix markers (Type I
collagen, Elastin, Decorin and Biglycan). Our results therefore
confirmed the tenogenic effects of CTGF and ascorbic acid on TDSCs.
We also tested the expression of osteogenic and chondrogenic
markers in TDSCs with and without ascorbic acid and CTGF stim-
ulation, and showed that the expressions of osteogenic (Osteo-
calcin) and chondrogenic (Type II collagen, Aggrecan) markers were
reduced in the TDSCs following ascorbic acid and CTGF stimulation,
indicating that the TDSCs had differentiated toward the tenogenic,
but not chondrogenic or osteogenic lineages. Our finding was
consistent with previous studies that CTCF increased collagen type I

and tenascin-C contents but not GAG content and calcium deposi-
tion in BMSCs [23]. Our results also confirmed the combined effect
of ascorbic acid and CTGF on TDSCs increased protein expression of
tenomodulin, type I collagen and type III collagen, which provided
suitable microenvironments for promoting tenogenic differentia-
tion. Pretreatment of TDSCs with CTGF and ascorbic acid therefore
helped to TDSCs differentiating toward tenogenic lineage and
forming cell sheets.

One of the major difficulties in studying the tenogenic differ-
entiation of stem cells is the lack of clearly defined tenogenic
biomarkers. Recently, Tnmd [38,39], Scx [40,41] and Thbs4 [38] were
identified as more specific markers for tendon tissue and our
in vitro study also showed increased expression of these genes in
TDSCs after CTGF and ascorbic acid treatment. After treatment with
CTGF and ascorbic acid for 2 weeks, the TDSCs formed an elastic cell
sheet with abundant extracellular matrices production. The TDSCs
cell sheet was then rolled up and loaded on a 1 cm wide U-shaped
spring to form the ESFTT. After transplantation of the ESFTT into
nude mice for 8 and 12 weeks, neo-tendon tissues were formed
with better collagen fibril alignment andmore spindle shaped cells.
Since the ESFTT was sutured on the middle line of the back in the
mice, and they were under physiologically mechanical loading
(tensile stretching) when mice move. The role of mechanical
loading on the functional development and maturation of neo-
tendon tissue has also been reported in previous in vitro studies
[42e45]. Cyclic tensioning of decellularized human umbilical veins
seeded with MSCs embedded in collagen type I hydrogel was re-
ported to increase the cell number, resulted in parallel orientation
of collagen fibers and spindle-shaped nuclei similar to native
tendons as well as produced mechanically stronger constructs
comparing to un-tensioned samples [45]. As we had observed,
more collagens had been deposited and the collagen fibrils were
more mature after transplantation in vivo, and the expression of
tenomodulin, collagen type I and collagen type III were similar to
that of intact healthy patellar tendon after 12 weeks implantation.

Our result showed that ESFTT could significantly enhance
tendon healing through enhancing extracellular matrices produc-
tion, improvement of collagen fiber alignment and increase in the
biomechanical properties of the regenerated tendon tissues. The
significant improvement of healing was observed as early as week 2
post-surgery and was maintained up to week 8 post-surgery. We
did not find any sign of fibrocartilage or ectopic bone formation in
both control and ESFTT groups up to week 8 post-surgery, sug-
gesting the use of ESFTT was safe. The ultimate stress was signifi-
cantly higher in the ESFTT group compared to that of the TDSCs
group at week 4. At week 4 post-surgery, The ESFTT group restored
the ultimate stress to 62.37% � 15.54% of the contralateral intact
patella; whereas the TDSCs group had reached to 48.53% � 10.12%
(p ¼ 0.028). Taking together the data of histology and biome-
chanical testing, the ESFTT group had better healing outcome than
that of TDSCs in fibrin glue group.

MSCs seeded in different scaffolds have been reported to repair
and regenerate injured tendons after transplantation into animal
models [18,46e50]. However, the use of these natural and synthetic
polymers for cell delivery have some limitations such as inferior
biocompatibility and biodegradability; poor mechanical strength
and immunogenicity as well as micro-architecture of the scaffold
which could affect the survival, proliferation and differentiation of
the transplanted cells. The secretion of ECM by TDSCs after treat-
ment with CTGF and ascorbic acid avoids the need of transplanting
the cells with biomaterials or scaffolds. Moreover, by forming
a preliminary tendon tissue structure first in vivo through cell
sheets, the ESFTT had gained certain mechanical properties that are
in favor of their in vivo implantation and early bearing of
mechanical loading. In the present study, we didn’t measure the
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mechanical properties of ESFTT and neo-tendon tissues, which are
needed in the future studies. We also need to further investigate
the healing mechanisms of ESFTT in tendon repair and compare the
use of ESFTT with other traditional tendon scaffolds in tendon
repair and regeneration.

5. Conclusion

CTGF and ascorbic acid treatment significantly enhanced the
tenogenic differentiation of TDSCs, and inhibited their osteogenic
and chondrogenic differentiation. Treatment of TDSCs with CTGF
and ascorbic acid for 2 weeks could lead to formation of elastic cell
sheets, which could be used to construct ESFTT in vitro. After
transplantation in nude mice for 12 weeks, the ESFTT formed neo-
tendon tissues. The ESFTT have also been shown to promote tendon
healing in a rat patellar tendon injury model. In conclusion, this is
a proof-of-concept study demonstrating that ESFTT could be
a potentially new approach for tendon repair and regeneration.
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