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ABSTRACT Mesenchymal stem cells (MSCs) are a
promising cell resource for tissue engineering. Sry-related
high-mobility group box 11 (Sox11) plays critical roles in
neural development and organogenesis. In the present
study, we investigated the role of Sox11 in regulating trili-
neage differentiation (osteogenesis, adipogenesis, and
chondrogenesis) andmigration ofMSCs, and explored the
effect of systemically administrated Sox11-modifiedMSCs
onbonefracturehealingusing the ratmodelofopen femur
fracture. Our results demonstrated that Sox11 over-
expression increased the trilineage differentiation and
migration of MSCs, as well as cell viability under oxidative
stress. The effect of Sox11 on osteogenesis was confirmed
by ectopic bone formation assay conducted in nude mice.
In addition, we found that Sox11 could activate the bone
morphogenetic protein (BMP)/Smad signaling pathway in
MSCs. By dual-luciferase reporter assay, we also demon-
strated that Sox11 could transcriptionally activate runt-
related transcription factor 2 (Runx2) andCXCchemokine
receptor-4 (CXCR4) expression. The activation of the
BMP/Smad signaling pathway and Runx2, CXCR4 ex-
pression may have a synergic effect, which largely con-
tributed to the effect of Sox11 onMSC fate determination
andmigration. Finally, usinganopen femur fracturemodel
in rats, we found that a larger number of MSCs stably
expressing Sox11 migrated to the fracture site and im-
proved bone fracture healing. Taken together, our study
shows that Sox11 is an important regulator of MSC dif-
ferentiation andmigration, andSox11-modifiedMSCsmay
have clinical implication for accelerating bone fracture
healing, which can reduce the delayed unions or non-
unions.—Xu, L., Huang, S., Hou, Y., Liu, Y., Ni, M., Meng,

F., Wang, K., Rui, Y., Jiang, X., Li, G. Sox11-modified
mesenchymal stem cells (MSCs) accelerate bone fracture
healing: Sox11 regulates differentiation andmigration of
MSCs. FASEB J. 29, 1143–1152 (2015). www.fasebj.org
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BONE FRACTURES ARE VERY common, and.5%of the fractures
are impaired, leading to nonunions and severe disabilities
(1). The positive effect of mesenchymal stem cells (MSCs)
onbone fracture healinghas been reportedpreviously (2).
MSCs have a multipotent capacity to differentiate into
a variety of cell types, including osteoblasts, adipocytes,
chondrocytes, myoblasts, and neurons (3, 4). In response
to stimuli, MSCs have the ability of homing to the target
tissue. Also, MSCs have been shown to be immunosup-
pressive and anti-inflammatory; they do not express major
histocompatibility complex (MHC)-II, CD80, CD86, and
CD40, andminimally expressMHC-I on the cell surface (3,
5, 6). These characteristics make MSCs a promising cell
source for tissue engineering, particularly for bone re-
generation. The capacities of differentiation and homing
are 2 determinants for the clinical application of MSCs for
bone regeneration. However, the capacity of MSCs to dif-
ferentiate into functional osteoblasts remains limited for
efficient bone regeneration (7), and the studies on MSCs
homing are rather limited.

Sry-related high-mobility group (HMG) box 11 (Sox11)
belongs to the Sox C group of Sox transcription factors.
The Sox proteins are characterized by HMG box, which
is a highly conserved DNA binding domain. The main
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function of Sox11 is involved in neural development and
organogenesis during fetal development (8, 9). It has been
demonstrated that Sox11 was highly expressed in de-
veloping sensory neurons, and ablating Sox11 caused an
arrest of axonal outgrowth in vivo and in vitro (10). The
Sox11 knockout mice showed craniofacial and skeletal
malformations, asplenia, and hypoplasia of the lung,
stomach, and pancreas (11), implying that Sox11 may be
associated with bone development. Recently, the role of
Sox11 in MSCs has been studied. It has been identified as
one of the MSC-characteristic transcription factors in-
volved in MSC stemness regulation by DNA microarray
analysis (12). Knocking down Sox11in MSCs suppressed
MSCs’ self-renewal capacitiesandreduced theirosteogenic
and adipogenic differentiation potential. However, the
exact role of Sox11 inMSC differentiation, migration, and
the underlying mechanisms are still not clearly clarified.

MSC differentiation into mature functional osteoblasts is
a complex process involving many transcriptional factors
and signaling pathways, such as Wnt, runt-related transcrip-
tionfactor2(Runx2),bonemorphogeneticproteins(BMPs),
hedgehog,Osterix, etc. Runx2 is amaster transcription factor
for osteogenic differentiation, and mice with homozygous
mutation in this gene showed a complete lack of ossification
(13).BMPs,membersof theTGF-b superfamily, are involved
in many aspects of embryogenesis and homeostasis, such as
neuronal development, osteogenesis, and bone remodeling
(14–16). The significance of BMPs in development and
osteogenesis has been reviewed (17). Studies in recent years
have found that BMP signals aremediated byBMP receptors
(type I and II), and Smad1, Smad5, and Smad8 are the im-
mediate downstream factors, which play a central role in
BMP signal transduction. Smad1, Smad5, and Smad8 are
phosphorylated by the receptors and then form a complex
with Smad4, and then the complex is translocated into
the nucleus. In the nucleus, the phosphorylated Smads
(pSmads) interactwith theother transcription factors suchas
Runx2 to initiate transcription of genes.

The chemokine stromal cell–derived factor-1 (SDF1)/
CXC chemokine receptor-4 (CXCR4) axis has been rec-
ognized to control the migration of MSCs (18, 19), and
stimulating the expression of CXCR4 is one of the strate-
gies for enhancing MSCs’ migration capacity (20–22). In
the mouse fracture model, it has been demonstrated that
systemically injected MSCs could migrate to the bone
fracture site, and the migration is mainly driven by the
SDF1/CXCR4 signaling pathway (2).

In the present study, we demonstrated that Sox11 over-
expression improved the trilineage differentiation and

migration abilities of bone marrow (BM)-MSCs. The en-
hancing effect of Sox11 on osteogenesis was confirmed by
ectopic bone formation assay conducted in nude mice.
We found that the BMP/Smad signaling pathway was en-
hanced by Sox11 overexpression in MSCs. In addition, we
also found that the promoter activity of Runx2 andCXCR4
was transcriptionally activated by Sox11. Finally, using an
open femur fracture model, we have demonstrated that
a larger numberofMSCs stably expressing Sox11migrated
to the fracture site, initiated callus ossification, and im-
proved bone fracture healing in vivo.

MATERIALS AND METHODS

Plasmid construction, transfection, production of lentivirus,
and infection

To construct lentiviral vector expressing Sox11, the green fluo-
rescent protein (GFP)gene inpLentiLox 3.7 (pLL3.7)was cut off
by NheI and EcoRI and replaced by a linker that has multiple
cloning sites. The sequence of the linker is as follows: 59-GCTA-
GCGCTACCGGTCGCCACCAGGCCTGCATGCTGATCAGGAT-
CCCCCGGGTTTAAACGAATTC-39.

The cDNAencodingGFPwas clonedby PCRand reinserted into
the reconstructed pLL3.7 at SmaI and EcoRI. The blasticidin selec-
tiongenewas inserted intoreconstructedpLL3.7atBamHIandSmaI
to form fusion protein with GFP. To construct a bicistronic expres-
sion vector, the internal ribosomeentry site (IRES) elementwas also
inserted into the reconstructed pLL3.7 vector at SphI and BamHI;
thefinal reconstructedpLL3.7vectorwasnamedpLL3.7-MCS-IRES-
Blasticidin/GFP. Finally, the gene encoding rat Sox11 (GenBank
number NM_053349) was amplified and cloned into pLL3.7-MCS-
IRES-Blasticidin/GFP vector by in vitro recombination.

Pseudolentiviruses were produced by transient transfection of
293FT packaging cells (Invitrogen, Carlsbad, CA, USA) using the
calcium phosphatemethod. Culture supernatants were harvested
at 48 and 72 h after transfection, and lentiviral particles were
concentrated using PEG6000 (23). For transduction, 13 105 cells
were seeded into a 6-well plate and incubated with lentiviruses
and 8 mg/ml Polybrene in the incubator for 24 h. After 48 h,
blasticidin (Invitrogen)wasadded into themediumto selectMSCs
stablyexpressingSox11(Sox11-MSCs)oremptyvector(con-MSCs).

The promoter region of Runx2 (24) was cloned and ligated into
pGL3 basic plasmid according to a previous study. The promoter
sequenceof ratCXCR4was retrievedandanalyzedagainstEnsembl
genomedatabases (http://www.ensembl.org) and theUCSCGenome
Bioinformatics browser (http://genome.ucsc.edu). The promoter re-
gionofCXCR4 that is 3000bpupstreamof thefirst exonwascloned
using the PCRprimers (forward 59-GCGGTACCTCGCATACCTG-
TAGTTCTAG-39 and reverse 59-TATCTCGAGCTCAGAGGG-
TCACTGCTAC-39) and ligated into pGL3 basic plasmid.

Cell culture

All experiments were approved by the Animal Research Ethics
Committee of the authors’ institutions. BM was flushed out from
thebonecavityof theSprague-Dawley rats and subjected todensity
gradient centrifugation over Lymphoprep (1.077 g/ml; Axis-
Shield, Oslo, Norway) to obtain the mononuclear cells (MNCs).
The MNCs were cultured in a-minimum essential medium
(MEM), 10% fetal bovine serum (FBS), and 2 mM L-glutamine
(Invitrogen) at 37°C with 5%CO2. The cells were trypsinized and
subjected to flow cytometry examination to confirm the MSCs’
surface markers (CD90, CD44, CD73, CD31, and CD34).

Luciferase reporter gene assay

Luciferase assay was performed using the Dual-Luciferase Re-
porter Assay System (Promega, Madison, WI, USA) according to
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the manufacturer’s instructions. 293T cells were cotransfected
with 400 ng empty vector or pLL3.7-Sox11, pRunx2-luc, or
pCXCR4-luc and 10 ng of the pRL-CMV using Lipofectamine
2000 (Life Technologies, Grand Island,NY,USA). The luciferase
activity was measured at 48 h after transfection using FLUOstar
Galaxy (BMG LABTECH, Ortenberg, Germany).

Osteogenic differentiation and alkaline phosphatase
activity assay

The MSCs were trypsinized and replated in a 6-well plate at a
concentrationof 13105 cellsperwell.These cellswere incubated
in the a-MEM for 2 or 3 d. The medium was then replaced by
osteogenic induction medium (OIM) containing 100 nM dexa-
methasone, 10mM b-glycerophosphate, and 0.05 mM L-ascorbic
acid-2-phosphate. At 7 d after osteogenic induction, the alkaline
phosphatase (ALP) activity assay was conducted using ALP-AMP
(BioSystems, Barcelona, Spain), according to themanufacturer’s
instructions. The ALP activity was normalized to total protein
concentration as measured by the Bradford method (Bio-Rad
Laboratories, Hercules, CA, USA). The mineralization of MSCs
was assessed by Alizarin Red S staining. Briefly, the cell/matrix
layer was washed with PBS, fixed with 70% ethanol for 10 min,
and stained with 0.5% Alizarin Red S (pH 4.1) (Sigma-Aldrich,
St. Louis, MO, USA) for 5 min.

Adipogenic differentiation

The MSCs were trypsinized and replated in a 6-well plate at
a concentration of 1 3 105 cells per well. These cells were in-
cubated in thea-MEMfor2or3d.Themediumwas thenreplaced
by adipogenic induction medium (AIM) containing 10% FBS,
1 mM dexamethasone, 10 mg/ml insulin, 50 mM indomethacin,
and0.5mMisobutyl-methylxanthine.Before staining, thecellswere
rinsed with PBS and fixed in 70% ethanol for 10 min. They were
then incubated in 2% Oil Red O reagent for 5 min at room tem-
perature, and excess stain was removed by washing with distilled
water. The number of Oil RedO-positive adipocytes was counted.
The experiment was repeated 3 times, 20 images were randomly
taken, and about 1000 cells were counted in each experiment.

Chondrogenic differentiation

The MSCs were trypsinized and concentrated at 500 g for
10 min, and then the pelleted cells were incubated in a chemi-
cally defined chondrogenic induction medium consisting of
high-glucose DMEM supplemented with 10 ng/ml recombinant
human TGF-b1 (PeproTech, Rocky Hill, NJ, USA), 100 mM
dexamethasone (Sigma-Aldrich), 1mM sodiumpyruvate, 0.2mM
ascorbic acid2-phosphate (Sigma-Aldrich), and ITS+Premix (BD
Biosciences, San Jose, CA, USA). The medium was changed
every 3 d. The obtained cell pellets were prepared for paraffin
sections. The deposition of glycosaminoglycans was assessed by
Safranin O staining. The positive stain was viewed under
a phase-contrast microscope (Leica Microsystems Wetzlar
Gesellschaft mit beschränkter Haftung, Wetzlar, Germany).

Western blot

The cells were washed with cold PBS twice and harvested by
scraping in cold cell extraction buffer (Invitrogen; catalog num-
ber FNN0011). Protein concentration was determined by the
Bradford method (Bio-Rad Laboratories). Equal proteins were
loaded onto 10% Tris/glycine gels for electrophoresis and then
transferred to a PVDFmembrane and blocked in 5%nonfatmilk
(Bio-RadLaboratories) for 1h at room temperaturewith rocking.
The primary antibody, anti-pSmad1/pSmad5/pSmad8 (1:1000;
Cell Signaling Technology, Danvers, MA, USA), anti-BMP2

(1:1000; Abcam, Cambridge, MA, USA), anti-BMPRIA (1:1000;
Santa Cruz Biotechnology, Dallas, TX, USA), anti-Sox11 (1:1000;
Santa Cruz Biotechnology), or anti–glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (1:1000; Santa Cruz Biotechnology)
then was added and incubated for 2 h at room temperature or at
4°C overnight. After washing in Tris-buffered saline with Tween
20 (TBST) 3 times (5 min for each time), the membrane was
incubated with horseradish peroxidase-linked secondary anti-
bodies (anti-mouse or anti-goat) for 1 h at room temperature.
Following 3 TBST washes, protein was detected with the ECL
blotting reagents (Amersham Biosciences, Piscataway, NJ, USA)
according to the manufacturer’s instructions. The band inten-
sity was quantified using ImageJ software (NIH, Bethesda,
MD, USA).

RNA extraction and real-time PCR

Total cellular RNA was isolated with RNeasy (Qiagen, Valencia,
CA, USA) according to the manufacturer’s instructions. First-
strand cDNA was synthesized with Moloney murine leukemia
virus reverse transcriptase (Promega). PCR amplification was
performed using the ABI StepOne Plus System (Applied Bio-
systems, Foster City, CA, USA) with primer sets outlined in Sup-
plemental Table 1. Primer sequences were determined through
established GenBank sequences. b-Actin was used as an internal
control to evaluate the relative expression.

MTT assay

The cell survival of MSCs was determined using MTT [3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] assay. The
con-MSCs and Sox11-MSCs were seeded at 2000 cells per well
in a 96-well plate and incubated at 37°C, 5% CO2, respectively.
At d 3, these cells were challenged with 0–250mMH2O2 for 24 h.
The cells were then incubated in the a-MEM with MTT solution
for 4 h at 37°C. The blue formazan crystals trapped in cells were
dissolved in 100 ml DMSO. The absorbance at 550 nm then was
measured with a plate reader.

Cell migration

Migration was assayed using BD Falcon (Bedford, MA, USA) cell
culture insert, which is 8 mm in pore size. The upper chamber of
the insert was plated with 0.53 105 Sox11-MSCs or con-MSCs in
a-MEM. The lower chamber contained a-MEM supplemented
with 10% FBS as chemoattractant. MSCs then were put into the
incubator for 16 h. TheMSCs remaining on the upper surface of
the membrane were removed with a cotton swab. After being
washed with PBS, the membrane was fixed with 4% para-
formaldehyde for 15min and stainedwith 0.5%crystal violet. The
number of cells passed through the membrane was counted.

Ectopic bone formation

A total of 2 3 105 Sox11-MSCs or con-MSCs were loaded onto
sterilized Skelite (Kingston, ON, Canada) resorbable bone graft
substitute and incubated at 37°C for 3 h to allow them attach to
the graft. There were 3 nudemice under general anesthesia, and
the grafts with the cells then were implanted subcutaneously
into thedorsal surfaces. The transplants were harvested 8wk later
and subjected to histologic examination. The sections were sub-
jected to hematoxylin and eosin (H&E) staining as well as im-
munohistochemical staining of osteocalcin (OCN). The osteoid
matrix areasweremeasuredusing ImageJ software; 5microscopic
fields were chosen from each sample and measured as reported
previously (25).
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Fracture healing model and analysis

Sprague-Dawley rats were anesthetized with ketamine and xyla-
zine intraperitoneally. The open fracture model was established
as previously reported (26). Sox11-MSCs or con-MSCs were
injected into Sprague-Dawley rats through tail vein injection
at 4 d after fracture (n = 10). The healing was monitored

radiographically using a digital X-raymachine. Rats were killed at
7 and 35 d after cell injection. Femurs were harvested for micro-
CT (computed tomography) analysis and then fixed in 4% buff-
ered formalin, decalcified in 9% formic acid, and embedded
in paraffin for sectioning. For micro-CT analysis, the femurs
were scanned by vivaCT 40 (SCANCO Medical, Brüttisellen,
Switzerland) using our previously established protocols (27). The
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Figure 1. Sox11 promoted differentiation and migration of MSCs in vitro. BM-MSCs were transduced with lentivirus carrying
Sox11 or empty vector, and then these MSCs were subjected to OIM, AIM, or CIM for several days. A–C) Sox11 promoted
osteogenic differentiation of MSCs. A) After 7 d of osteogenic induction, the osteogenesis-related marker genes were analyzed by
real-time PCR. B) The ALP activity of MSCs was measured after they were incubated with OIM for 7 d. C) Sox11 increased
calcium deposition of MSCs. Alizarin Red staining is shown of MSCs after the cells were treated with OIM for 19 d. D–F) Sox11
promoted adipogenic differentiation of MSCs. D, E) After 14 d of adipogenic induction, the adipogenesis-related marker genes
(CEBPa and PPARg) were quantified with real-time PCR. The percentage of Oil Red O-positive cells in the 2 groups was
calculated. F) Representative images of Oil Red O staining after the cells were treated with AIM for 14 d. G–I) Sox11 promoted
chondrogenic differentiation of MSCs. G, H) MSCs were treated with CIM for 7 and 14 d, and then total RNA was extracted for
real-time PCR analysis of chondrogenesis-related markers. I) Representative images of Safranin O staining of MSCs after the cells
were treated with CIM for 21 d. J, K) Sox11 overexpression promoted migration of MSCs. The MSCs migrated through the
membrane were detected with crystal violet staining. The number of MSCs was counted (n = 3). All the data represent the mean6 SD

of 3 independent experiments. *P , 0.05. Scale bars, 100 mm.
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scan range covered 3 mm proximal and 3 mm distal to the frac-
ture line with a resolution of 10.5 mm. Low- and high-density
mineralized tissues were reconstructed usingdifferent thresholds
(low attenuation, 160; high attenuation, 350) using our estab-
lished evaluation protocol with small modification (28). The
high-density tissues represented the newly formed highly miner-
alized calluses and theoldcortices, whereas the low-density tissues
represented the newly formed calluses. To assess the mechanical
properties of the fractured femur, a mechanical test was per-
formed as reported by our department (29). The sections were
subjected to H&E or Safranin O staining or immunohistochem-
ical staining of OCN as described previously (30). GFP-labeled
MSCs were detected by immunohistochemical analysis using
anti-GFP antibody (Santa Cruz Biotechnology). The number of
GFP-positive cells was quantified by Image-Pro Plus 6.0 software
(Media Cybernetics, Silver Spring, MD, USA) in 4 randomly se-
lected sections from each sample of 3 different Sprague-Dawley
rats. The region of interest was located near the fracture line.

Statistical analysis

All experiments were performed at least 3 times. All data were
expressed as the mean 6 SD. The data were analyzed by inde-
pendent 2-tailedStudent’s t test usingSPSS (version16.0;Chicago,
IL, USA). P, 0.05 was regarded as statistically significant.

RESULTS

Sox11 promoted trilineage differentiation and
migration of BM-MSCs

Toevaluate the effect of Sox11 onMSCdifferentiation and
migration, the MSCs were transduced with lentivirus car-
rying Sox11 or empty vector, and then these MSCs were
subjected toOIM,AIM,or chondrocyte inductionmedium
(CIM) for several days, respectively. After 7 d of osteogenic
induction, the osteogenesis-related marker genes were
analyzed by real-time PCR analysis. The mRNA levels of
ALP, OCN, collagen type I, and Runx2 were significantly
up-regulated in MSCs overexpressing Sox11 (Fig. 1A). At
the same time, we also measured the ALP activity and
found that Sox11 overexpression significantly increased
the ALP activity compared with the empty vector control
cells (Fig. 1B). When the cells were treated with OIM
for 19 d, more calcium deposits appeared in the MSC-
overexpressing Sox11 group (Fig. 1C).

For adipogenesis, after 14dof adipogenic induction, the
adipogenesis-related marker genes [CCAAT/enhancer
binding protein a (CEBPa) and peroxisome proliferator-
activated receptor g (PPARg)] were quantified with real-
timePCR; the results showed that bothCEBPa andPPARg
were up-regulated by Sox11 overexpression (Fig. 1D).
The percentage of Oil Red O-positive cells in Sox11-
overexpressing MSCs was significantly higher than that of
the control cells (Fig. 1E). Representative images of Oil
Red O staining are shown in Fig. 1F.

For chondrogenesis, the MSCs were treated with CIM
for 7 and 14 d before RNA extraction for real-time PCR
analysis. The result demonstrated that Sox11 significantly
up-regulated the chondrogenesis-related marker genes
such as Sox9, aggrecan, and collagen type II a at both time
points (Fig. 1G,H),meaning that Sox11 also promoted the
chondrogenic differentiation ofMSCs in vitro. After 21d of

treatment with CIM, the cell pellets were fixed, sectioned,
and stained with Safranin O. The staining result showed
that Sox11-overexpressing MSCs had higher chondro-
genic differentiation potential, compared to the control
group (Fig. 1I).

In addition, we also checked the role of Sox11 in MSC
migration because the migration ability is one of the most
important characteristics of MSCs. The MSCs were trans-
duced with lentivirus carrying Sox11 or empty vector con-
trol, an equal number of MSCs then were added into the
upper layer of the BD Falcon cell culture insert, which is
8 mm in pore size. The lower chamber contained a-MEM
supplemented with 10% FBS as chemoattractant. After
incubation for 16h, thenumber ofMSCs that pass through
the membrane was counted. Significantly more numbers
of MSCs crossing the membrane were observed in the
Sox11-overexpressingMSCgroupcompared to thecontrol
MSC group (Fig. 1J, K).

Sox11 promoted ectopic bone formation of MSCs
in vivo

In order to further confirm the effect of Sox11 on osteo-
genic differentiation of MSCs, Sox11-MSCs or con-MSCs
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Figure 2. Overexpression of Sox11 in MSCs promoted ectopic
bone formation in vivo. A) Sox11-MSCs and con-MSCs were
loaded onto sterilized porous calcium phosphate restorable
granules and implanted subcutaneously into the dorsal surfaces.
The transplants were harvested 8 wk later for histologic
examination. There were 5 microscopic fields from each sample
used for quantification of new bone area (n = 3). *P , 0.05. B)
Representative images of H&E staining and immunohistochem-
ical staining of OCN. Amorphous osteoid matrix could be seen
in the pores of transplants. Scale bar, 400 mm.
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were loaded onto sterilized Skelite resorbable silicon-
stabilized tricalcium phosphate bone graft substitutes and
implanted s.c. at the dorsal sides. The transplants were
harvested 8 wk later and subjected to histologic examina-
tion. The sections were subjected to H&E staining to ob-
serve the distribution of osteoid or immunohistochemical
analysis to detect the expression of OCN. The histologic
staining result suggested that the area of osteoid matrix in
the Sox11-MSC group was about twice as much as that of
the control MSC group (Fig. 2A). The formation of bone-
like tissuewas confirmedby thepresenceofOCNandH&E
staining of the osteoid (Fig. 2B).

Sox11 activated the BMP/Smad signaling pathway and
CXCR4, Runx2 expression

Because the BMP/Smad signaling pathway is well known
for its involvement in MSC differentiation and migration,
we further asked whether Sox11 could activate the BMP/
Smad signaling pathway inMSCs.Our real-time PCRresult
showed that Sox11 significantly increased the mRNA
levels of BMP2, BMP4, BMPRI, and BMPRII (Fig. 3A).
In addition, we also detected the effect of Sox11 on the
BMP/Smad signaling pathway by Western blot. The result

showed that Sox11 overexpression greatly increased the
level of BMP2 and pSmad1/pSmad5/pSmad8 (Fig. 3B),
suggesting that the BMP/Smad signaling pathway was en-
hanced by Sox11.

In Sox11-overexpressing MSCs, we found that the rela-
tive levels of trilineage differentiation and migration-
related markers were significantly increased (Fig. 3C).
Furthermore,wealso found that Sox11 couldbindwith the
CXCR4 or Runx2 promoter region and transcriptionally
activate the expression of CXCR4 or Runx2, as demon-
strated by dual-luciferase reporter assay (Fig. 3D, E).
CXCR4 is an important regulator of cell migration, and
Runx2 is a master transcription factor responsible for the
osteogenesis of MSCs. Our results had indicated that the
increased level of CXCR4, Runx2 as well as the enhanced
BMP/Smad signaling pathwaymay be responsive in Sox11
promotion/enhancement of MSC differentiation and
migration.

Sox11-modified MSCs accelerated bone fracture
healing in an open femur fracture rat model

Finally, todeterminewhether Sox11 could acceleratebone
fracture healing, open femur fractures were created in
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8-wk-old Sprague-Dawley rats. Sox11-MSCs or con-MSCs
were injected systemically at 4 d after fracture. At 7 d after
MSC injection, the calluses from rats that received Sox11-
MSC injection showed larger areas of cartilage as demon-
stratedbyH&EandSafraninOstaining, indicating that the
fracture repair in those rats proceeded through an endo-
chondral ossification processmuch faster than those in the
control groups (Fig. 4A). In addition, a great number of
GFP-labeled MSCs were found homing to the site of frac-
ture as shownby immunohistochemistry staining (Fig. 4A),
and the number of GFP-labeled MSCs overexpressing
Sox11 was greater than that of the control group (Fig. 4B).
Our in vitro study showed that Sox11-MSCs exhibited
a survival advantage over con-MSCs under the circum-
stanceofoxidative stress, whichcouldbeoneof the reasons
accounting for more MSCs being observed in the fracture
site apart from cell migration. As shown in Fig. 4C, Sox11-
MSCs had higher cell survival capacity compared to con-
MSCs when both of them were challenged by H2O2 at
different concentrations for 24 h.

At 5 wk after MSC injection, the femurs were collected
for micro-CT and histologic analysis. The results of micro-
CT exhibitedmore bone formation in callus in the Sox11-
MSC group compared with the control group (Fig. 5A).
Quantitatively, the ratswithSox11-MSC injectiondisplayed

a significant increase in total bone volume (BVt)/total tis-
sue volume (TV) and volume of low-density bone (BVl)/
TV (Fig. 5B, C), whereas no differences were seen in the
volume of high-density bone (BVh)/TV (Fig. 5D and Sup-
plemental Table 2), suggesting an enhanced bone for-
mation process. To confirm functional recovery of the
fractured bones, biomechanical evaluation by a 4-point
bending test was performed. The result showed that the
percentage ratios of mechanical properties (including ul-
timate load, energy to failure, and stiffness) in the frac-
tured femur vs. the contralateral intact femur were
significantlyhigher (except the stiffness) in theSox11-MSC
group than that of the control group (Fig. 5E–G).

In addition, the immunohistologic staining with GFP
antibody showed that the GFP-labeled MSCs still localized
in the fracture site, and a larger number of GFP-labeled
MSCs displayed in the rats transplanted with Sox11-MSCs
(Fig. 6A). Through defining the region of interest as
illustrated in Fig. 6B, we calculated the relative area of
bone and uncalcified region according to the histologic
staining. The result showed that the percentage of bone
in calluses of rats transplanted with Sox11-MSCs was
higher than thatof the controlMSCgroup(Fig. 6C), aswell
as the percentage of cartilage in the uncalcified calluses
(Fig. 6D).
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DISCUSSION

In the present study, we found that Sox11 promoted
trilineage differentiation and migration of MSCs, and
systemic administration of allogenic Sox11-modified
MSCs could accelerate bone fracture healing using
Sprague-Dawley rat models. Therefore, our study pro-
vides important clues for the development of new ther-
apeutic strategies in bone regeneration.

Sox11 has been reported to be involved in neural de-
velopment and organogenesis during fetal development
(8, 9). The Sox11 knockout mice showed craniofacial and
skeletal malformations (11). It has been identified as one
of the MSC-characteristic transcription factors involved in
MSC stemness regulation (12). In this study, we have
demonstrated that Sox11-overexpressing MSCs showed
enhanced trilineage differentiation and migration abili-
ties. These interesting findings further lead us to ask
whether Sox11 could activate the BMP/Smad signaling
pathway in MSCs because it is well known for its in-
volvement in regulating MSC differentiation and migra-
tion. Kang et al. (31) have conducted a comprehensive
analysis of 14 typesofBMPs for their abilities to regulate the
multilineage-specific differentiation of MSCs. They found
that BMP 2, 4, 5, 7, and 9 effectively induced both osteo-
genic and adipogenic differentiation in vitro and in vivo. In
our study, the in vitro result clearly showed that Sox11could
activate the BMP/Smad signaling pathway in MSCs, which
partially contributes to the enhanced trilineage differen-
tiation andmigration abilities ofMSCs. In addition, we also

found that Sox11 could transcriptionally activate the ex-
pressionofCXCR4andRunx2.CXCR4,a specific receptor
for SDF1, plays essential roles in hematopoiesis and or-
ganogenesis (32, 33). Mice lacking CXCR4 die in utero and
are defective in vascular development, hematopoiesis, and
cardiogenesis (34). Recently, the SDF1/CXCR4 axis has
beenrecognized tocontrol themigrationofMSCs(18, 19).
CXCR4 genetically modified MSCs have been used for
postinfarction myocardial repair in rats through in-
travenous delivery, and the results suggested that the
number of MSCs homing toward the infracted myocar-
diumwasmarkedly increased, thereby leading to improved
cardiac performance (22). Runx2, a transcription factor
that belongs to the Runx family, has been well known to be
an essential master transcription factor for osteoblast dif-
ferentiation.Runx2-deficientmice showed a complete lack
ofossification (13).Runx2hasbeenshowntoact in synergy
with BMP-induced osteogenic differentiation (31). Thus,
the effect of Sox11 on MSC differentiation and migration
may be mediated by the BMP/Smad signaling pathway
synergizing with Runx2, CXCR4, and other effectors such
as Sox9, PPARg, etc.

In addition, we also checked the effect of Sox11 on the
osteogenesis of MSCs using an in vivo ectopic bone for-
mation model. The result showed that increased osteoid
formation was observed in Sox11-overexpressing MSCs
when theMSCs combined with grafts were transplanted in
nude mice. Furthermore, in order to determine whether
Sox11-overexpressing MSCs could be used to accelerate
bone fracture healing, we used an open femur fracture
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model created in 8-wk-old Sprague-Dawley rats. The
result demonstrated that a larger number of Sox11-
overexpressing MSCs migrated to the fracture site and
accelerated the fracture repair process. The results of
micro-CT quantitatively exhibited a greater bone volume
density in the Sox11-MSC group comparedwith that of the
control group in the fracture callus. The biomechanical
evaluation indicated that the percentage ratios of me-
chanical properties in the fractured femur vs. the contra-
lateral intact femur were higher in the Sox11-MSC group
than that of the control group. The number of MSCs is an
important determinant influencing the effect of MSCs
on fracture healing. It has been pointed out that the effect
of transplanted MSCs on fracture repair is dependent
on the number of cells presented at the fracture site (35).
Our in vitro result demonstrated that Sox11 could promote
cell migration by increasing CXCR4 as well as cell viability
under oxidative stress, which would contribute to the
higher number of MSCs in the fracture callus. In addition,
according to the histologic staining, we found that the
percentage of bone in calluses of rats transplanted with
Sox11-MSCs was higher than that of the control MSC
group, as well as the percentage of cartilage in the un-
calcified calluses. These data demonstrated that systemic
administration of Sox11-overexpressing MSCs could ac-
celerate bone fracture healing. In a stabilized tibia fracture
mouse model, the systemically transplanted mouse MSCs
have been shown to migrate to the fracture site and im-
prove the fracture healing (2). This report and our results
provide evidence that systemically transplanted MSCs or

genetically modifiedMSCs are applicable and effective for
promoting bone fracture repair.

In summary, we demonstrated that Sox11 could en-
hance the trilineage differentiation and migration of BM-
MSCs. We found that the BMP/Smad signaling pathway
was enhanced by Sox11 overexpression in MSCs. In addi-
tion, we also found that the promoter activity of Runx2 and
CXCR4 was activated by Sox11. In an open femur fracture
model, we have demonstrated that MSCs stably expressing
Sox11 migrated to the fracture site, initiated callus ossifi-
cation, and improved bone fracture healing. These find-
ings suggest that Sox11 plays important roles in regulating
osteogenic differentiation and migration of MSCs. Our
findings support that using genetically modified Sox11-
MSCs to enhance fracture repair may be a potential new
MSC-based therapy.
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