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ABSTRACT: SDF-1 was found to infiltrate cartilage, decrease proteoglycan content, and increase MMP-13 activity after joint trauma.
In this study, we tested the hypothesis that interference of the SDF-1/CXCR4 signaling pathway via AMD3100 can attenuate
pathogenesis in a mouse model of PTOA. We also tested the predictive and confirmatory power of fluorescence molecular tomography
(FMT) for cartilage assessment. AMD3100 was continuously delivered via mini-osmotic pumps. The extent of cartilage damage after
AMD3100 or PBS treatment was assessed by histological analysis 2 months after PTOA was induced by surgical destabilization of the
medial meniscus (DMM). Biochemical markers of PTOA were assessed via immunohistochemistry and in vivo fluorescence molecular
tomography (FMT). Regression analysis was used to validate the predictive power of FMT measurements. Safranin-O staining revealed
significant PTOA damage in the DMM/PBS mice, while the DMM/AMD3100 treated mice showed a significantly reduced response with
minimal pathology. Immunohistochemistry showed that AMD3100 treatment markedly reduced typical PTOA marker expression in
chondrocytes. FMT measurements showed decreased cathepsins and MMP activity in knee joints after treatment. The results
demonstrate that AMD3100 treatment attenuates PTOA. AMD3100 may provide a viable and expedient option for PTOA therapy given
the drug’s FDA approval and well-known safety profile. � 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
J Orthop Res 33:1071–1078, 2015.
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It has been reported that aging, trauma, excessive
mechanical load, and genetic factors are correlated
with osteoarthritis (OA) development, while the exact
mechanisms remain elusive.1–3 In particular, the
treatment and prevention of post-traumatic osteoar-
thritis (PTOA) is essential as joint-related trauma has
been highly correlated with PTOA development.4–10

Even in light of increasing research into reconstructive
strategies and novel developments, joint reconstruc-
tion has not been shown to attenuate PTOA develop-
ment.11–14

Chemokines and their receptors have garnered
much attention given their role in immune cell
function, importance for the regulation of cancer cell
invasion, and role in the migration of stem cells.
Specific to this study, CXCR4, is a G-protein coupled
receptor that promotes activation of intracellular sig-
naling cascades and release of MMP1 and VEGF.15,16

Originally isolated from a bone marrow stromal line,
CXCR4’s ligand is the 8kDa chemokine SDF-1.17 Even
though the mechanism of release remains unknown,
overproduction of SDF-1 has been related to inflamma-
tory cytokines including IL-1b and TNF-a.18,19 SDF-1
has been shown to have a variety of targets, activating
primary cells by binding to the CXCR4 receptor, which

in turn, stimulates chondrocyte proliferation, differen-
tiation, and apoptosis.20,21

Recent evidence would also indicate that SDF-1/
CXCR4 signaling plays an important role in PTOA
progression. Looking at the distribution of SDF-1 and
CXCR4 in human joints, research has shown that
SDF-1 is produced in synovial membrane cells while it
is receptor is primarily located in articular chondro-
cytes.22 Briefly, SDF-1 activates the calcium, Erk and
p38 MAP kinase signaling pathways, leading to the
release of MMPs and other proteins.23–25 Clinical data
related to synovectomies, a procedure that effectively
relieves the pain associated with OA, shows a reduc-
tion in the serum SDF-1 level, decreasing intra-
articular MMP release.26 The increase of SDF-1 was
also found in the PTOA animal model.22,23,26,27 These
results would point to the SDF-1/CXCR4 as a key
pathway in regulating PTOA related cartilage degen-
eration.22,23,26,27 Studies have also shown SDF-1/
CXCR4 signaling to play an important role in growth
plate development. Through the mediation of type X
collagen and MMP-13, key markers of hypertrophic
chondrocyte differentiation, SDF-1/CXCR4 interaction
stimulates chondrocyte hypertrophy at the chondro-
osseous junction during bone formation.28

Given the alternative role of the SDF-1/CXCR4 in
HIV pathways, the development of chemical agents
related to pathway attenuation has been greatly
accelerated. AMD3100, a specific inhibitor of the SDF-
1/CXCR4 pathway, presents an ideal candidate for
consideration. A bicyclam with a high specificity for
CXCR4, AMD3100 has been approved for human use
in HIV and cancer therapy.29,30 Specific to chondrosar-
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coma, AMD3100 has previously been used to inhibit
the expression of MMP1 and cell invasion in vitro.31

Specific to this study, Wei et al.32 found that SDF-1/
CXCR4 binding induces OA cartilage degeneration
and disruption of the pathway via siRNA attenuated
the effects of SDF-1 treatment in a primary guinea pig
model of natural OA.

In this study, we tested the hypothesis that trauma-
associated, SDF-1 mediated cartilage degradation can
be prevented by blocking the interaction between SDF-
1 and the CXCR4 receptor on articular chondrocytes via
continuous infusion of a specific inhibitor, AMD3100, in
a mouse model of PTOA. We also tested the predictive
and confirmatory power of in vivo fluorescence molecu-
lar tomography (FMT), a non-invasive imaging tech-
nique that can provide a quantitative measure of
catabolic enzymes using specific probes.

METHODS
Animals
Twenty-eight male C57Black6/J mice (2-month-old) were
obtained at 8 weeks of age (Charles River, Cambridge, MA).
Mice were randomized into three groups: Group 1 (n¼ 8)
animals underwent destabilization of the medial meniscus
(DMM) on the right knee and were treated with AMD3100
via constant infusion osmotic mini-pump; Group 2 (n¼ 8)
animals underwent DMM on the right knee and were treated
with PBS via constant infusion osmotic mini-pump; and
Group 3 (n¼ 5) animals underwent sham surgery on right
knee and received empty pumps at 8 weeks. All animals
were euthanized 2 months after surgery. An additional
group, which underwent neither surgery nor pump implanta-
tion, was included as an additional control (n¼ 7). Right hind
limbs were harvested immediately after euthanasia. Approv-
al was obtained via the Institutional Animal Care and Use
Committee (IACUC) at Rhode Island Hospital.

Surgery
To induce PTOA in the destabilization of the medial menis-
cus (DMM) subgroups, the right medial meniscotibial liga-
ment was cut using a surgical microscope and microsurgical
technique to destabilize the medial meniscus (DMM) as
previously described by Glasson et al.33 Attention was paid
not to injure the articular cartilage during the procedure.
The right knee joints of mice in the Sham subgroups were
sham-operated through the same approach without medial
meniscotibial ligament injury. Post-operative animals were
allowed unrestricted activity, food, and water and housed
under standard conditions.

Delivery and Dosing of AMD3100
A 1.5 cm transverse skin incision was made over the dorsal
thorax, and a subcutaneous pocket created via blunt dissec-
tion. The loaded Alzet osmotic minipumps (model 1004,
0.11mL/h Alza, Palo Alto, CA) were inserted and the fascia
and skin closed with 8-0 nylon, while the skin was closed with
surgical staples. AMD3100 (Mozobil; Genzyme, Framingham,
MA) was administered systemically. AMD3100 dosing was
virtually identical to that used to successfully inhibit autoim-
mune joint inflammation in IFN-gamma receptor-deficient
mice.34 AMD3100 was delivered at a rate of 180mg/day, which
corresponds to steady serum level of 0.3mg/ml.35 Given the

maximum duration of the Alzet osmotic pump is 4 weeks, the
pumps were exchanged once. After 2 months of treatment
the animals were euthanized and the knee joints removed.

Histology
The knee joints of right hind limbs were harvested and
immersed in 10% (v/v) formalin for 72h. The specimens were
decalcified in 20% (v/v) EDTA solution (pH 7.2) and dissected
in the sagittal plane. They were processed in a Tissue-Tek
VIP 1000 tissue processor (Miles, Elkhart, IN) and embedded
in a single block of Paraplast X-tra (Thermo-Fisher, Hamp-
ton, NH). The slices were cut into 6-mm sections and
mounted on slides. Safranin-O staining was performed and
the severity of cartilage damage was then assessed using the
OARSI osteoarthritis cartilage histopathology assessment
system (OOCHAS) grading system (PTOA score¼Grade�
Stage, total 0–24) by three independent and blinded observ-
ers, before the scores were averaged for each joint.36

Immunohistochemistry
To determine the expression of inflammatory and catabolic
factors immunohistochemistry was performed. To detect the
distribution of PTOA markers: MMP-13, type 2 3/4Cshort (C1,
C2) and type X collagen in articular cartilage, 6-mm sections
were collected on positively charged glass slides (Thermo-
Fisher). Immunohistochemistry was carried out using the
DAB Histostain-SP Kit (Zymed-Invitrogen, Carlsbad, CA).
Sections were prepared via standard methods. The sections
were incubated with specific antibodies against MMP-13
(Santa Cruz, Santa Cruz, CA), type 2 3/4Cshort (C1,C2),
which detects fragments of both type I and type II collagen
produced by the action of collagenase (IBEX, Montreal,
Quebec), and type X collagen (Santa Cruz) respectively at
4˚C overnight. Following staining, slides were qualitatively
analyzed for the expression of markers. Photography was
performed with a Nikon E800 microscope (Nikon, Melville,
NY).

Fluorescence Molecular Tomography (FMT)
Using in vivo FMT imaging methods, real-time information
was gained about biological processes using probes and deep
tissue imaging.37–39 ProSense and MMPSense, both protease-
activated near-infrared (NIR) fluorescence imaging probes,
detect cathepsin and MMP activity respectively. We used
FMT imaging at three months to confirm that AMD3100
treatment reduced the presence of inflammatory reactions
associated with PTOA pathology. We also used FMT imaging
to confirm histological scores and immunohistochemical data.

Similar to the methodology used by Zhou et al.40 at
2 months, mice were injected with single dose of ProSense
750EX and MMPSense 680 fluorescent agents (PerkinElmer,
Waltham, MA) 24h before scanning. After being anesthetized
using an intraperitoneal injection of ketamine (75mg/kg)
and medetomidine (1mg/kg), mice were placed in an upright
position in the imaging chamber and then imaged with the
FMT system (ViSen, Waltham, MA). A NIR laser diode
emitting continuous wave radiation at wavelengths of 670 or
746nm transilluminated the lower body of animal from
posterior to anterior, and both excitation and emission
signals were detected by a charge-coupled device (CCD)
camera and appropriate band pass filters. ProSense detects
cathepsin B, L, S, and plasmin. MMPSense detects MMP-2,
3, 9, and 13 activities. The DMM/PBS group (N¼ 5), DMM/
AMD3100 group (N¼ 6), and Sham group (N¼ 6), were
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imaged. Concentrations of the probes in the knee joint were
determined using Region of Interest (ROI) analysis, by
restricting the area of measurement to the mid-femur to
mid-tibia in order to isolate the joint space.

Statistical Analysis
The OOCHAS score in different groups were analyzed by
one-way ANOVA with multiple pair-wise comparisons made
by the Student–Newman–Keuls method (three comparisons
or more) at a rejection level of 5% unless otherwise noted.
Mixed linear models were used to compare cartilage inflam-
mation measurements via in vivo FMT measurements.
Residual estimates of maximum likelihood were used to fit
the models to provide unbiased estimates for missing data
due to the small sample size of FMT scans. Post hoc paired

comparisons among the three experimental groups were
carried out with orthogonal contrasts using the Spearman’s
rank test to maintain alpha at 0.05. Adjusted p values are
reported to account for multiple comparisons. All data are
presented as means and p values of the (operative limb
treated with AMD3100-control sham limb). The relationships
between the Mankin score versus the FMT quantifications of
inflammation were assessed with regression analysis. All
statistical analyses were done in STATA SE 12.1 (StataCorp,
College Station, TX).

RESULTS
Histology
Cartilage histology revealed a safranin-O positive
articular cartilage surface in the DMM/AMD3100

Figure 1. AMD3100 treatment prevents OA cartilage damage. Safranin-O staining shows the changes in proteoglycan and cartilage
structure in representative (median OOCHAS scoring) joints. (A) DMM/PBS, (B) DMM/AMD3100, (C) Sham control, (D) Sham—No
surgery control.
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treatment group with a preserved and intact cartilage
surface similar to the Sham control (Fig. 1). As
expected, the DMM/PBS group showed an extensive
reduction in proteoglycan content and severe cartilage
damage with matrix erosion at the surface.

Using the OOCHAS score, the extent of OA damage
was quantified by blinded observers. Severe OA dam-
age was quantified in the DMM/PBS group, while
the DMM/AMD3100 treatment group displayed signifi-
cantly lower scores (p<0.001) not significantly differ-
ent from either the sham or No-surgery control groups
(p¼0.704, 0.169, respectively) (Fig. 2). Related to the
safranin-O staining, and in line with the literature,

the OOCHAS scores of the sham with pump and
no surgery groups were not significantly different
from zero (p<0.001) as they showed minimal PTOA
damage (Fig. 1).

Immunohistochemistry
In the DMM/PBS group, expression of MMP-13 was
elevated compared to the DMM/AMD3100 and Sham
groups (Fig. 3). Expression of Col 2 3/4short (C1-2C)
and Col X were markedly reduced in the AMD3100
treatment and sham groups, where less PTOA damage
was observed, compared to the PBS control, where
extensive PTOA damage was observed. Staining was
uniform across cartilage surfaces.

Fluorescence Molecular Tomography (FMT)
The MMPSense signal was significantly reduced
from 0.55 pmols in the DMM/PBS group to 0.29 pmols
in the DMM/AMD3100 group (p<0.05). Similarly, a
significant positive correlation was (p<0.001; N¼ 17)
was found between the MMPSense signals and the
OOCHAS scores across all the study groups
(r2¼ 0.899). Similarly, AMD3100 treatment signifi-
cantly reduced the ProSense signal from 1.42 pmols
in the DMM/PBS group to 0.61 pmols in the DMM/
AMD3100 group (p< 0.05; Fig. 4). A significant posi-
tive correlation was (p< 0.001; N¼ 17) also found
between the ProSense signals and the OOCHAS scores
(r2¼ 0.923; Fig. 5).

Figure 2. Blockage of SDF-1/CXCR4 by AMD3100 attenuated
OA. OOCHAS scores are shown. Mean�SD. DMM/PBS, N¼ 8.
DMM/AMD3100, N¼ 8. Sham—pump only, N¼5. Sham—no
surgery, N¼ 7. There were no significant differences between the
two control groups, but there was as significant difference
(p< 0.001) between the DMM/PBS group and the DMM/
AMD3100 group.

Figure 3. MMP-13, Col X, and Col 2 3/4short expression are reduced in AMD3100 treated mice. Immunohistochemical staining was
done on cartilage, and representative images are presented. Positive signal is indicated by brown/red staining.
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DISCUSSION
Our data suggests that PTOA associated articular
cartilage pathogenesis can be prevented by continuous
infusion of a specific CXCR4 antagonist, AMD3100,
further confirming the role of the SDF-1/CXCR4
pathway in PTOA development. This study also high-
lights the predictive power of in vivo fluorescence
molecular tomography for estimation of cartilage
degradation.

While extensive cartilage degeneration was
observed in the control (DMM/PBS), minimal damage

was observed in the treatment group (DMM/
AMD3100) indicating that AMD3100 effectively pre-
vented PTOA associated articular cartilage structural
damage (Fig. 1). The structural damage detected using
histology was also supported by both the biochemical
and in vivo FMT inflammation data, which demon-
strate that AMD3100 treatment significantly reduces
inflammatory signals associated with the production of
proteases after DMM, associated with decreased OA
pathology in the same treated mice at both a gross and
biochemical level. It is well known that increased

Figure 4. AMD3100 treatment reduces inflammation signals determined by FMT. Cathepsin and MMP activity are decreased in
AMD3100 treated joints at 3 months after DMM surgery. (A) Representative MMPSense and ProSense images and (B) summary data
means are shown. DMM/PBS, N¼5; DMM/AMD3100, N¼6; Sham, N¼6.
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MMP-13 expression leads to matrix degradation and
knockdown of MMP-13 reduces OA associated carti-
lage damage in mice.41 Downregulation of C1-2C
confirms reduced cleavage of both type II and type I
collagen by MMPs in both bone and cartilage, respec-
tively.42 Work by Shen et al.,43 which examined the
effects of hMeSPC injection on articular protection,
has shown the importance of SDF-1 signaling on
meniscus repair in PTOA. Although these two studies
focus on the same pathway, the present work tests the
natural role of the SDF-1/CXCR4 pathway in PTOA
progression, rather than the enhancing effect of SDF-1
treatment on hMeSPC migration and morphology for
meniscus repair.

We have also demonstrated that in vivo FMT
measurements are not only highly correlated with
morphological and immunohistochemical data, but
that, FMT measurements have the potential to predict
PTOA cartilage development (Fig. 2). FMT has previ-
ously been used in a variety of fields as a non-invasive
tool to measure inflammatory diseases.37–39,44 FMT
represents an optimal technique for non-invasive, lon-
gitudinal inflammation measurements and continuous
monitoring of disease progression, as measurements

have been used to sensitively predict disease develop-
ment in rheumatoid arthritis.44 This study has shown
both ProSense and MMPSense probes may be correlat-
ed with morphological results in PTOA pathogenesis in
the murine model.

For patients with a known risk of developing PTOA,
this study is particularly relevant. Given a reported
window of PTOA onset and disease progression,
successful AMD3100 dosing may have the ability
to attenuate the biochemical progression of PTOA-
associated articular cartilage degradation following
reconstructive or corrective surgery. Further research
will be required to evaluate the long-term efficiency
and pharmacokinetic profile of AMD3100, but the
present results are encouraging. Additional research
will also be required to evaluate the potential of
AMD3100 to attenuate global PTOA progression after
the initial onset of disease.

A potential limitation to this study is that surgical
DMM may not be as traumatic as an ACL injury
sustained during physical activity. Bone bruises and
chondral lesions frequently occur in the latter, and
these concomitant injuries may also play a role in the
development of PTOA. Recognizing the role of SDF-1
signaling in the recruitment of reparative cells, it will
be important to demonstrate that use of this drug
neither increases the time for general wound healing
nor restoration of subchondral cystic changes that
often occur in association with traumatic joint injury.
Research by Shen et al. demonstrated that AMD3100,
in clinical situations involving surgical repair of the
meniscus, may be contraindicated as the SDF-1 axis
has been implicated in meniscus repair. Nonetheless,
the animal ACLT model has been frequently used to
study PTOA, and mimics human OA both macroscop-
ically and biochemically.33 Minimizing joint innate
immunity inflammation until ACL reconstruction is
performed may be an important preventative measure
against the long-term development of PTOA.

In summary, the results of this study demonstrate
that pharmacologic inhibition of SDF-1 signaling with-
in the joint may provide protection against cartilage
destruction in a mouse model of PTOA and highlights
the potential of AMD3100, an FDA approved drug, as
an effective attenuator of the SDF-1/CXCR4 pathway.
Future clinical studies should explore orthopedic
opportunities for pharmacologic inhibition of the SDF-
1/CXCR4 signaling pathway, given AMD3100 provides
as a promising agent for therapeutic use given its
high specificity and well known safety profile in
humans.30,45
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