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Background & Aims: Long non-coding RNA Hotair has been con-
sidered as a pro-oncogene in multiple cancers. Although there is
emerging evidence that reveals its biological function and the
association with clinical prognosis, the precise mechanism
remains largely elusive.
Methods: We investigated the function and mechanism of Hotair
in hepatocellular carcinoma (HCC) cell models and a xenograft
mouse model. The regulatory network between miR-218 and
Hotair was elucidated by RNA immunoprecipitation and lucifer-
ase reporter assays. Finally, the correlation between Hotair,
miR-218 and the target gene Bmi-1 were evaluated in 52 paired
HCC specimens.
Results: In this study, we reported that Hotair negatively regu-
lated miR-218 expression in HCC, which might be mediated
through an EZH2-targeting-miR-218-2 promoter regulatory axis.
Further investigation revealed that Hotair knockdown dramati-
cally inhibited cell viability and induced G1-phase arrest in vitro
and suppressed tumorigenicity in vivo by promoting miR-218
expression. Oncogene Bmi-1 was shown to be a functional target
of miR-218, and the main downstream targets signaling, P16Ink4a

and P14ARF, were activated in Hotair-suppressed tumorigenesis. In
primary human HCC specimens, Hotair and Bmi-1 were concor-
dantly upregulated whereas miR-218 was downregulated in these
tissues. Furthermore, Hotair was inversely associated with
miR-218 expression and positively correlated with Bmi-1 expres-
sion in these clinical tissues.
Conclusion: Hotair silence activates P16Ink4a and P14ARF signal-
ing by enhancing miR-218 expression and suppressing Bmi-1
expression, resulting in the suppression of tumorigenesis in HCC.
� 2015 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.

Introduction

Liver cancer is the fifth most prevalent cancer and the third lead-
ing cause of all cancer-related deaths worldwide. HCC is the most
common primary malignant type in adults and is more frequent
in men than in women [1,2]. Although advances in HCC diagnosis
and treatment have increased the possibility of cure, HCC
remains largely incurable because of poor prognosis and
recurrence. Therefore, the development of innovative, targeted
therapies is imperative and of high clinical significance.
Recently, a variety of studies have proposed that non-coding
RNAs contribute to hepatocarcinogenesis, indicating the potential
of non-coding RNA as an effective molecular target for cancer
diagnosis and therapeutics [3–5].

Long non-coding RNAs (lncRNAs), extensively transcribed
from the mammalian genome, have gained widespread attention
in recent years. They serve as important and powerful regulators
of various biological activities and play critical roles in the pro-
gression of a variety of diseases including cancer [6–8]. Hotair
(Hox transcript antisense intergenic RNA) is a 2158-bp lncRNA
located in the Hoxc gene cluster but represses the transcription
of Hoxd locus in foreskin fibroblasts [9]. As a novel regulator in
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tumorigenesis, Hotair was initially found to promote invasive-
ness and metastasis in breast cancer [8,9]. In addition, Hotair is
associated with chromatin modifications and it exhibits
pro-oncogenic activity in pancreatic cancer [10]. Moreover, its
upregulation positively correlates with poor prognosis, tumor
progression and recurrence in gastrointestinal cancers such as
colorectal cancer, HCC and gastrointestinal stromal tumors [11–
15]. Although an increasing number of studies have focused on
its biological function and its association with clinical prognosis
in cancers, the precise mechanism underlying its upregulation
remains largely unknown.

As a broadly conserved microRNA, microRNA-218 (miR-218)
is considered to be a tumor suppressor in multiple carcinomas,
such as bladder cancer [16], nasopharyngeal cancer [17],
non-small cell lung cancer [18], glioma [19], gastric cancer [20],
and cervical carcinoma [21]. In the present study, miR-218 was
found to be downregulated whereas Hotair was upregulated in
HCC specimens and an inverse association was also observed in
these samples. Further investigation revealed that the negative
regulation of Hotair might be mediated through an
EZH2-targeting-miR-218-2 promoter regulatory axis.
Knockdown of Hotair was sufficient to inhibit tumorigenicity
both in vitro and in vivo by promoting miR-218 expression.
Furthermore, the downstream targets P14ARF and P16Ink4a signal-
ing were activated in Hotair-miR-218-mediated tumorigenesis
through directly suppressing oncogene Bmi-1 expression.
Collectively, our findings dissected a novel mechanism of
Hotair-mediated hepatocarcinogenesis and it might help to
develop a promising molecular target for HCC therapy.

Materials and methods

Cell culture and tissue specimens

A panel of HCC cell lines including HepG2, Bel7404, PLC5, HuH7, and immortal-
ized non-tumorigenic MIHA cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Invitrogen) supplemented with 10% FBS and 1%
penicillin-streptomycin.

Fifty-two paired primary HCC specimens, their non-tumor counterparts, and
five normal liver tissues were collected by means of tumor resection at the Prince
of Wales Hospital, The Chinese University of Hong Kong (CUHK). The information
is further described in the Supplementary Table 1. All the human tissues were
obtained with informed consent and this study was approved by Joint Chinese
University of Hong Kong-New Territories Ease Cluster Clinical Research Ethics
Committee.

RNA oligoribonucleotides and cell transfections

All RNA oligoribonucleotides were purchased from Genepharma (Shanghai,
China). The small interfering RNAs (siRNAs) that specifically target human
Bmi-1 mRNA (NCBI Reference No: NM_005180), Hotair (NCBI Reference No:
NR_003716.3) and EZH2 (NCBI Reference Sequence: NM_001203247.1) were des-
ignated as siBmi-1, siHotair and siEZH2, respectively. The negative control RNA
duplex (NC) for both miRNA mimics and siRNA, as well as the single-stranded
negative control RNA for miRNA inhibitors (anti-NC), was non-homologous to
any human genome sequences. Their sequences are listed in Table 1.

The transfection of RNA oligoribonucleotides was performed by using
Lipofectamine 2000 (Invitrogen) [23]. The transfection of plasmid DNA was per-
formed by using X-tremeGENE (Roche). Unless otherwise indicated, 100 nM of
RNA duplex or 200 nM of miRNA inhibitor were used for each transfection and
all the experiments were repeated in triplicate.

Lentiviral miR-218 expression plasmid construction and lentiviruses production

A 110 bp sequence of pre-miR218 encompassing the stem-loop was amplified
and then cloned into a lentiviral vector (designated as Lv-miR218). The

production and purification of the lentivirus were performed as mentioned previ-
ously [22,23]. Briefly, the pseudo-typed lentivirus was generated by
co-transfecting 293T cells with Lv-miR218 vector and three packaging vectors
(pRRE, pRSV-REV, and pCMV-VSVG). A lentiviral vector expressing a scramble
RNA was used as the control (Lv-Sc).

Hotair ShRNA and overexpression plasmids

Lv-ShHotair and Lv-ShNC (a small hairpin RNA acts as control) plasmids were
kindly provided by Prof. Weidong Han of the First Affiliated Hospital to the
Chinese PLA General Hospital. The Hotair overexpression plasmid (pHotair) was
purchased from Addgene.

Bioinformatics analyses

The online bioinformatics programs, miRanda (http://www.microrna.org),
Targetscan (http://www.targetscan.org), DINAN-LAB (http://diana.cslab.ece.ntua.
gr), and Findtar (http://bio.sz.tsinghua.edu.cn) were applied to predict the target
genes of miR-218.

Bmi-1 overexpressing plasmid construction

The full coding sequence (CDS) of Bmi-1 was amplified and then cloned into
PCDNA3.1 vector. The Bmi-1 overexpressing vector was designated as
PCDNA-Bmi-1, and the empty vector was used as control.

Cell viability and cell cycle analyses

Cell viability was analyzed by using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylt
etrazolium bromide (MTT, Sigma) assays as described previously [22]. Briefly,
5 � 103 cells per well were seeded into a 96-well plate. After microRNAs
(miRNAs) transfection, the cells were maintained for 72 hours and cell viabilities
were determined by using a Benchmark Plus™ microplate spectrometer
(Bio-Rad). For cell cycle analysis, cells were plated in 6-well plates at
2 � 105 per well and transfected with miRNAs. After 72 hours, the cell cycle dis-
tribution was analyzed by propidium iodide (PI) staining by flow cytometry [24].

Colony formation assays

HepG2 and Bel7404 cells were infected with Lv-miR218 or Lv-Sc and cultured for
72 hours, and then they were re-plated in 6-well plates at the density of
5 � 102 per well and maintained for two weeks. The colonies were fixed and
stained with 0.5% crystal violet for 15 minutes.

RNA extraction, reverse transcription and quantitative reverse transcription
polymerase chain reaction (qRT-PCR)

The total RNA was extracted by Trizol reagent (Invitrogen). The reverse tran-
scription was performed as described previously [22,23]. Primers are listed
in the Supplementary Table 2. U6 or GAPDH were used as endogenous
controls.

Table 1. Sequences of RNA, siRNA and mRNA used.

NC:   5’ UUCUCCGAACGUGUCACGUUU 3’
anti-NC:     5’ GUGGAUAUUGUUGCCAUCA 3’
miR-218:                  5’ UUGUGCUUGAUCUAACCAUGU 3’
anti-miR218:            5’ ACAUGGUUAGAUCAAGCACAA 3’
siBmi-1-1:  5’ CGUGUAUUGUUCGUUACCUTT 3’
siBmi-1-2:  5’ GCGGUAACCACCAAUCUUC 3’
siHotair-1:  5’ CCACAUGAACGCCCAGAGAUUTT 3’
siHotair-2:  5’ GAACGGGAGUACAGAGAGAUU 3’
siEZH2-1:  5’ AAGAGGUUCAGACGAGCUGAUTT 3’
siEZH2-2:  5’ GAAUGGAAACAGCGAAGGATT 3’

NC: control.
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Western blotting

Protein lysates were separated by SDS-PAGE (10%) and transferred to PVDF mem-
branes (Millipore). The membranes were blocked with 5% skimmed milk for
1 hour and incubated with primary antibodies including rabbit polyclonal
anti-Bmi-1 (Cell Signaling Technology), anti-P14 (Santa Cruz), anti-pRb (Santa
Cruz), anti-E2F1 (Santa Cruz), anti-P16 (Santa Cruz), anti-Mdm2 (Santa Cruz),
anti-P53 (Cell Signaling Technology) at 4 �C overnight. They were then followed
by the HRP-labeled corresponding secondary antibodies for 1 hour and the
chemiluminescence (ECL, USA) was used to detect the results. GAPDH was used
as the internal control.

Luciferase activity assay

Bmi-1 30-UTR fragment (nt 1337–1800) was inserted into the pMIR vector
(Promega) to generate Bmi-1-30UTR-Wt luciferase reporter. The binding sites
mutant vector was then generated by using a Site-Directed Mutagenesis Kit
(Invitrogen). The Wt and Mu constructs were verified by DNA sequencing. The
Wt or Mu luciferase reporter and miRNAs were co-transfected into HepG2 cells,
and the luciferase activity was measured at 28–30 hours by using the luciferase
reporter assay system (Promega).

Xenograft mouse model

Female athymic nude mice (4–6 weeks old) were purchased from the Laboratory
Animal Services Centre of CUHK. The usage and treatment of nude mice were
approved by the Animal Experimental Ethics Committee of CUHK. HepG2 cells
infected with Lv-miR218 or Lv-Sc or Lv-ShHotair or Lv-ShNC and 1 � 106 infected
cells were injected subcutaneously into the dorsal flank of nude mice. Tumor size
was measured twice a week and tumor volumes (V) were calculated as the for-
mula: V = (D � d2)/2, in which D means the longest diameter and d means the
shortest diameter [22].

Immunohistofluorescence

The specimens were fixed overnight in 4% paraformaldehyde, dehydrated and
embedded in paraffin. Sections (5 lm) were used to analyze Ki-67
(Calbiochem) and Bmi-1 expression. After being counterstained with DAPI
(Invitrogen), the images were captured using a Zeiss Axiophot 2 microscope.

Statistical analysis

Data are expressed as means ± SD. The two-tailed Student’s t test was used to
compare cellular proliferation, cell cycle distribution, colony formation, gene
expression, and tumorigenicity between the two selected groups. The correlation
between two factors in HCC specimens was performed by using Pearson’s corre-
lation in GraphPad Prism 5.0. The difference was considered as statistically signif-
icant when the p value is less than 0.05.

Results

Hotair negatively regulates miR-218 expression in hepatoma cells

Previous studies have demonstrated that Hotair expression was
increased in multiple cancers [12–15], and our results corrobo-
rated that it was significantly upregulated in most HCC cells
(Fig. 1A). We also found that Hotair was increased in HCC tissues
compared to their adjacent non-tumor tissues and the normal
liver tissues (Fig. 1B). Additionally, miR-218 was downregulated
in HCC cells (Fig. 1C) and specimens (Fig. 1D). Therefore, Hotair
upregulation while miR-218 downregulation is a frequent event
in human HCC, and this may be involved in malignant tumor
development and progression. To further validate the negative
regulation of Hotair on miR-218, we silenced Hotair by using
its specific siRNAs (siHotair) and the results showed that Hotair
expression was downregulated by siHotair-1 and siHotair-2

(Supplementary Fig. 1A). The siHotair-1 was selected to be used
in the following experiments and a dramatically enhanced
miR-218 expression was observed in HepG2 and Bel7404 cells
(Fig. 1E). On the other hand, miR-218 was downregulated in
the two HCC cells with Hotair overexpression (Fig. 1F;
Supplementary Fig. 1B). These data suggest that Hotair negatively
regulates miR-218 expression in HCC cells.

Hotair modulated miR-218 expression through an EZH2-miR-218-2
promoter regulatory axis

Hotair mediated invasion and metastasis by acting as a bridge to
recruit the polycomb repressive complex 2 (PRC2), thereby lead-
ing to chromatin modifications [8]. Enhancer of zeste homolog 2
(EZH2), a key component of PRC2, is frequently upregulated in
HCC, and it possesses oncogenic properties in tumorigenesis
[25–27]. In our study, EZH2 was upregulated in HCC specimens
(Supplementary Fig. 2A). To assess whether Hotair associates
with EZH2, RNA immunoprecipitation (RIP) assay was performed
and the results showed that Hotair was preferentially enriched in
the EZH2-recruited complex (Fig. 2A). The siRNAs against EZH2
were designed and its expression was decreased by siEZH2-1
and siEZH2-2 (Supplementary Fig. 2B and C). Moreover, the cell
viability was suppressed by siEZH2-1 in HCC cells
(Supplementary Fig. 2D).

The mature miR-218 is produced from two separate loci,
namely, miR-218-1 and miR-218-2, which are co-expressed
with their host genes Slit2 and Slit3, respectively [20]. The pre-
vious study reported that Slit3, consistent with miR-218-2 pre-
cursor, was silenced in pancreatic cancer cells [28]. Our results
also displayed the similar effect in HepG2 and Bel7404 cells
(Supplementary Fig. 3A and B). Slit3 was found to be downreg-
ulated whereas Slit2 remained unchangeable in HCC specimens
(Supplementary Fig. 3C and D). In addition, miR-218-2 precur-
sor and Slit3 were upregulated by siEZH2-1 whereas miR-218-1
precursor and Slit2 did not show any obvious change in HepG2
cells (Fig. 2B and C). Moreover, the expression of miR-218 was
promoted by siEZH2-1 in HepG2 and Bel7404 cells (Fig. 2D). To
verify the direct regulatory role of EZH2 on miR-218 expres-
sion, a luciferase assay was performed in HepG2 cells. A
2 k bp sequence of miR-218-2 promoter (miR-218-2-Luc) was
cloned into PGL3 luciferase reporter. As expected, EZH2 knock-
down generated a higher luciferase activity of miR-218-2-Luc
reporter (Fig. 2E).

Hotair mediated cell cycle arrest through upregulating miR-218
expression

To explore the functional significance of Hotair in tumorigenesis,
the HepG2 and Bel7404 cells were transfected with siHotair-1 or
pHotair, and cell viabilities were detected. As shown in Fig. 3A,
siHotair-1 suppressed cell viability (left panel) while pHotair pro-
moted cell survival (right panel) in HCC cells. Furthermore, the
HuH7 and PLC5 cells with a lower expression of Hotair were
transfected with pHotair, and the cells viability were monitored.
As shown in Supplementary Fig. 4, pHotair significantly enhanced
the cells viability in the two HCC lines. Next, we investigated the
proliferative effect of miR-218 on HCC cells and the results
showed that miR-218 induced a suppressive effect whereas
anti-miR-218 induced a proliferative effect on cell viability
(Fig. 3B).
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In addition, the cell cycle distribution demonstrated that
siHotair-1 or ectopic miR-218 induced an increased percentage
of HepG2 cells in G1-phase and fewer cells in S-phase
(Fig. 3C and D), indicating that the growth-suppressive effect
resulted from G1-phase arrest. We further evaluated the prolifer-
ative effect of stable miR-218 overexpression. A lentiviral vector
was used to stably restore miR-218 expression, and mature
miR-218 was strongly enhanced in the Lv-miR218-infected
HepG2 and Bel7404 cells (Supplementary Fig. 5A). Moreover,
the growth inhibition induced by Lv-miR218 was similar to that
induced by miR-218 mimics in HepG2 and Bel7404 cells
(Supplementary Fig. 5B). Next, the capacity of colony formation
was assessed and results showed that Lv-miR218-infected HCC
cells displayed much fewer and smaller colonies compared with
those obtained with Lv-Sc-infected cells (Fig. 3E).

To evaluate the antagonistic effects of Hotair and miR-218 on
cell viability, miR-218 was transfected into the pHotair stably
infected HepG2 cells and the proliferation was assayed. As shown
in Fig. 3F, miR-218 reversed the proliferation induced by Hotair
overexpression (left panel). On the other hand, anti-miR-218
was transfected into Lv-ShHotair infected HepG2 cells and it
significantly abrogated growth inhibition induced by Hotair
knockdown (right panel).

Bmi-1 was identified as a functional target of miR-218 in HCC cells

Bmi-1 was predicted to be a functional target of miR-218 by sev-
eral bioinformatics programs including Targetscan, miRanda,
Findtar and DINAN-microT. The sequence of 1459-1477 in
Bmi-1 30UTR perfectly matches with miR-218 seed
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(Supplementary Fig. 6). According to the predicted sequence,
Bmi-1-30UTR-Wt and Bmi-1-30UTR-Mu reporters were generated.
The luciferase activity assays showed that miR-218 dramatically
suppressed the firefly luciferase activity of the Bmi-1-30UTR-Wt
reporter but not that of the Bmi-1-30UTR-Mu reporter in HepG2
cells (Fig. 4A). Further investigation displayed a significant
decrease in the endogenous expression of Bmi-1 at mRNA and
protein levels in response to miR-218 transfection (Fig. 4B;
Supplementary Fig. 7A). As an oncogene [29], Bmi-1 was upregu-
lated in HCC cells (Fig. 4C; Supplementary Fig. 7B) and specimens
(Supplementary Fig. 8). In addition, Bmi-1 was suppressed by

siHotair-1 and promoted by pHotair at mRNA and protein levels
(Fig. 4D; Supplementary Fig. 7C). Collectively, all these data indi-
cated that Hotair regulated carcinogenesis in HCC, at least par-
tially through suppressing miR-218 and activating Bmi-1
expression.

P14ARF and P16Ink4a signaling were activated by siHotair through
promoting miR-218 expression

It is well-established that tumor suppressors P16Ink4a and P14ARF

are the main targets of Bmi-1 that contribute to repressing cell
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proliferation and senescence [30,31]. Our results have demon-
strated that Bmi-1 expression was suppressed by siHotair-1,
therefore, we wondered whether P14ARF and P16Ink4a signaling
were involved in this event. As expected, the expression of
P14ARF and P53 were upregulated, whereas Mdm2 was
downregulated by siHotair-1, indicating the activation of
P14ARF-P53 signaling (Fig. 5A; Supplementary Fig. 9A).
Moreover, P16Ink4a-Rb signaling was stimulated by siHotair-1
including the upregulation of P16Ink4a and the downregulation
of pRb and E2F1 (Fig. 5A; Supplementary Fig. 9A). Similarly,
P14ARF-P53 and P16Ink4a-Rb signaling were also activated by
ectopic miR-218 (Fig. 5B; Supplementary Fig. 9B). Conversely,
inhibition of endogenous miR-218 led to inactivation of the two
signaling pathways (Fig. 5B; Supplementary Fig. 9B).

To elucidate whether miR-218 suppressed the carcinogenesis
by reducing Bmi-1 expression, we performed loss- and
gain-of-function studies. We firstly silenced Bmi-1 by its specific
siRNAs (siBmi-1) and the result revealed that it was suppressed
at the mRNA and protein levels (Supplementary Fig. 10A and
B). Then the cell growth and cell cycle distribution were further
investigated by using siBmi-1-2. Notably, Bmi-1 knockdown sig-
nificantly attenuated cell growth (Fig. 6A) and induced G1-phase
arrest (Fig. 6B). Moreover, the P14ARF-P53 and P16Ink4a-Rb path-
ways were also activated by siBmi-1-2 (Fig. 6C; Supplementary
Fig. 11A).

We next determined whether Bmi-1 overexpression could
reverse the suppressive effect of miR-218 in HCC cells. An expres-
sion vector PCDNA-Bmi-1, which encoded the full-length coding
sequence of Bmi-1, was transfected into HepG2 cells (Fig. 6D;
Supplementary Fig. 11B). Intriguingly, reinforced expression of
Bmi-1 dramatically abrogated the miR-218-induced cell viability
inhibition (Fig. 6E) and reversed the activation of P14ARF-P53 and
P16Ink4a-Rb signaling induced by miR-218 (Fig. 6F;
Supplementary Fig. 11C). Furthermore, we also found that the
anti-miR-218 partially rescued siBmi-1-2 induced cell growth

inhibition (Fig. 6G, top panel) and the reinforced expression of
Bmi-1 dramatically abrogated the miR-218-induced cell viability
inhibition (Fig. 6G, bottom panel).
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Hotair mediated tumorigenicity through miR-218 upregulation and
Bmi-1 downregulation in vivo

Following the above observation, we further verified these
in vitro findings by using an in vivo xenograft model. The
HepG2 cells stably infected with Lv-ShHotair or Lv-miR218 were
subcutaneously injected into the dorsal flank of nude mice.
Compared with the ShNC group, the ShHotair group revealed a
significant reduction in tumor volume (Fig. 7A) and size
(Fig. 7B). The similar anti-cancer effect of miR-218 on HCC cells
in vivo are displayed in Fig. 7C and D and Supplementary
Fig. 12. Furthermore, the cell proliferation marker Ki-67 and
Bmi-1 were detected by immunohistofluorescence analyses.
Decreased Ki-67 and Bmi-1 expression were observed in xeno-
grafts of mice treated with ShHotair or Lv-miR218 cells (Fig. 7E).

Hotair expression negatively correlates with miR-218 and positively
correlates with Bmi-1 in primary HCCs

miR-218 was frequently decreased in hepatoma and 67.3% of the
HCC specimens displayed the decreased miR-218 expression in
our study (Fig. 8A). Hotair and Bmi-1 expression were increased
in 76.9% and 78.8% of HCC patients, respectively (Fig. 8A).
Furthermore, the association analyses showed that a significant
inverse association between the expression of Hotair and
miR-218 was observed in these HCC specimens (Fig. 8B). More
importantly, a negative correlation between Bmi-1 and
miR-218 (Fig. 8C) and a positive association between Hotair
and Bmi-1 were identified in these specimens (Fig. 8D). Taken
together, we pinpoint the following regulatory axis: miR-218,

negatively regulated by Hotair, may inhibit cell growth and
induce G1-phase arrest by directly suppressing Bmi-1 expression,
thereby activating P14ARF-P53 and P16Ink4a-Rb signaling path-
ways in HCC (Fig. 8E).

Discussion

Elucidating the function of transcriptional factors in HCC has
been considered as a key for revealing the critical pathways in
hepatocarcinogenesis. LncRNAs have recently been identified as
novel regulators of the transcriptional and epigenetic networks.
LncRNA Hotair has been documented to play a part in the
epigenetic regulation of gene transcription in a number of
epidemiological studies [10,32]. The aberrantly upregulated
Hotair was detected in several tumors, including breast cancers,
colorectal cancers, pancreatic cancers, cervical cancers, bladder
cancers, HCC and gastrointestinal stromal tumors [8,10,33–35].
Our data validated that Hotair was overexpressed in HCC speci-
mens, and for the first time, we determined that Hotair knock-
down could inhibit cell growth, induce cell cycle arrest and
suppress tumorigenicity.

Recent studies have established that Hotair negatively regu-
lates miRNA-130a in gallbladder cancer [36]. Our study identified
that Hotair negatively regulated miR-218 expression in which
Hotair overexpression decreased miR-218 expression while its
silence promoted miR-218 expression. The antagonistic effects
of Hotair and miR-218 on cell proliferation further validated this
negative regulation. Furthermore, the negative association
between Hotair and miR-218 was also determined in HCC
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specimens. Distinguished from the function as a ‘‘competitive
endogenous RNAs (ceRNA)’’ in gallbladder cancer [36], Hotair
serves as a bridge to interact with PRC2, which leads to chro-
matin remodeling and H3K27 trimethylation [8,37]. Our results
also suggest that Hotair acts as a scaffold to recruit EZH2 into a
complex, and this has been confirmed by RIP assays. EZH2, a sub-
unit of PRC2, negatively regulated miR-218-2 expression through

directly targeting its promoter, of which the knockdown of EZH2
increased miR-218 expression and its promoter activity. This
negative regulatory pattern is consistent with previous studies
of pancreatic cancer [28].

As a well-known tumor suppressor, miR-218 was found to
suppress cell viability and reduce tumorigenesis in HCC
in vitro and in vivo. Generally, miRNAs negatively regulate their
mRNA targets in a sequence-specific binding manner. In this
study, the polycomb group transcriptional repressor Bmi-1
was predicted to be a promising target of miR-218 by bioinfor-
matics analyses. Further investigation confirmed that it was a
bona fide target of miR-218 in HCC, which was reported in col-
orectal cancer [38]. As a member of the polycomb group family,
Bmi-1 has an essential role in embryogenesis and regulation of
cell cycle. Moreover, it serves as a pro-oncogene in tumorigenic-
ity [39] and also contributes to the maintenance of the cancer
stem cells [29,40].

P16Ink4a and P14ARF are the main targets of Bmi-1 in mediat-
ing cell proliferation and senescence [30,31]. The two tumor sup-
pressors play important roles in regulating cell cycle arrest and
carcinogenesis. P14ARF binds and inhibits the P53 antagonist
Mdm2, leading to the accumulation of P53 [29,40].
Furthermore, P16Ink4a is frequently inactivated in tumors and
activation of P16Ink4a-Rb signaling results in senescence [41]. In
the present study, P14ARF and P16Ink4a signaling pathways were
activated by Hotair knockdown and ectopic miR-218. As a target
gene of miR-218, Bmi-1 knockdown induced cell growth inhibi-
tion, cell cycle arrest and activation of P14ARF and P16Ink4a signal-
ing pathways. On the other hand, exogenous introduction of
Bmi-1 could rescue the suppressive effect and the inactivation
of P14ARF and P16Ink4a signaling induced by miR-218. These data
strongly support the notion that Bmi-1 serves as a critical medi-
ator in the Hotair-miR-218-mediated hepatocarcinogenesis.

Emerging evidence have demonstrated the clinical signifi-
cance of Hotair in gastrointestinal cancer [11–15], and suggested
the potential role of Hotair in diagnosis and therapeutics [42,43].
We further addressed the association between Hotair, miR-218
and Bmi-1 in 52 pairs of HCC specimens. Hotair was upregulated
in approximately 76.9% and Bmi-1 was increased in approxi-
mately 78.8% whereas miR-218 was suppressed in nearly 67.3%
HCCs. More importantly, an inverse correlation between Hotair
and miR-218 was observed, demonstrating the clinical
significance of Hotair combined with miR-218 as a diagnostic
or therapeutic target for HCC. In conclusion, our integrated
approach shows for the first time that Hotair plays a critical role
in hepatocarcinogenesis through the downregulation of miR-218
and inactivation of P14ARF and P16Ink4a signaling. This lncRNA
directly recruits EZH2 and silences miR-218 expression through
binding its promoter which provides a mechanistic basis for the
aberrant Bmi-1 activation in HCC. Thus, the disruption of the
Hotair-EZH2-miR-218 negative regulatory axis is highly promis-
ing to the design of therapeutic interventions in HCC.
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